
WADT
2014

22nd International Workshop on
Algebraic Development Techniques

SEPTEMBER 4 - 7, 2014
SINAIA, ROMANIA
In memoriam Joseph A. Goguen

1

WADT 2014

Preliminary Proceedings

22nd International Workshop on
Algebraic Development Techniques

Răzvan Diaconescu Mihai Codescu Ionuţ Ţuţu

Technical report

Simion Stoilow Institute of Mathematics
of the Romanian Academy

September 2014

Preface

The 22nd International Workshop on Algebraic Development Techniques (WADT
2014) took place in Sinaia, Romania, from 4th to 7th September 2014. The event
was dedicated to the memory of Joseph A. Goguen – one of the founding members
of the ADT community – who visited Sinaia many times with great pleasure to
meet with his former student and close friend Răzvan Diaconescu, the chair of
WADT 2014. Sinaia is a beautiful mountain resort that has become a traditional
Romanian venue for mathematical and theoretical computer science events, from
the 2nd edition of the International Mathematical Olympiad (held in 1960) to the
more recent Summer School on Language Frameworks and the Romanian-Japanese
Algebraic Specification Workshops, which discussed some of the latest developments
related to algebraic specification and in particular to the CafeOBJ language.

The algebraic approach to system specification encompasses many aspects of
the formal design of software systems. Originally born as formal method for
reasoning about abstract data types, it now covers new specification frameworks
and programming paradigms (such as object-oriented, aspect-oriented, agent-
oriented, logic and higher-order functional programming) as well as a wide range
of application areas (including information systems, concurrent, distributed and
mobile systems). Thus, typical topics of interest are:

– foundations of algebraic specification,

– other approaches to formal specification, including process calculi and models
of concurrent, distributed and mobile computing,

– specification languages, methods, and environments,

– semantics of conceptual modelling methods and techniques,

– model-driven development,

– graph transformations, term rewriting and proof systems,

– integration of formal specification techniques,

– formal testing, quality assurance, validation, and verification.

As 22 occurrences of the ADT Workshop can be considered as something to be
noticed, a short look back may be allowed. The first workshop took place in 1982
in Sorpesee followed by Passau 1983, Bremen 1984, Braunschweig 1986, Gullane
1987, Berlin 1988, Wusterhausen 1990, Dourdan 1991, Caldes de Malavella 1992, S.
Margherita 1994, Oslo 1995, Tarquinia 1997, Lisbon 1998, Chateau de Bonas 1999,
Genova 2001, Frauenchiemsee 2002, Barcelona 2004, La Roche en Ardenne 2006,
Pisa 2008, Etelsen 2010, and Salamanca 2012. With only a few exceptions at the
beginning, it became also a tradition to publish selected papers after each workshop
as a recent-trends series in Lecture Notes in Computer Science 332, 534, 655, 785,

3

906, 1130, 1376, 1589, 1827, 2267, 2755, 3423, 4409, 5486, 7137, and 7841, while
the first volume of this kind appeared as Informatik-Fachberichte 116. This speaks
for the stability of the ADT community and the continuity of the topics of interest.
One should realize, however, that some significant transformation took place from
1982 to today. While ADT stood for Abstract Data Types at the beginning, it is
now (since 1997) the acronym for Algebraic Development Techniques, and the list
of topics has broadened in an amazing way.

This volume contains the 32 abstracts of ongoing research results presented
during the workshop, including the two invited talks by K. Rustan M. Leino
(Microsoft Research, USA) and Christoph Benzmüller (Freie Universität Berlin,
Germany). As for previous ADT workshops, after the meeting authors will be
invited to submit full papers for the refereed proceedings, which will be published
as a volume of Springers Lecture Notes in Computer Science.

The WADT Steering Committee consists of:

– Michel Bidoit (France)

– Andrea Corradini (Italy)

– José Fiadeiro (UK)

– Rolf Hennicker (Germany)

– Hans-Jörg Kreowski (Germany)

– Till Mossakowski (Germany) – chair

– Fernando Orejas (Spain)

– Francesco Parisi-Presicce (Italy)

– Grigore Roşu (United States)

– Andrzej Tarlecki (Poland)

The Local Organizing Committee of WADT 2014 consists of former lecturers and
students at the Postgraduate Academic Studies School “Şcoala Normală Superioară
Bucureşti” (SNSB):

– Răzvan Diaconescu (Romania) – chair

– Mihai Codescu (Germany)

– Ionuţ Ţuţu (UK)

The workshop took place under the auspices of IFIP WG1.3 and benefited from
the support offered by IFIP TC1 and the Simion Stoilow Institute of Mathematics
of the Romanian Academy (IMAR).

September 2014
Sinaia

Răzvan Diaconescu
Mihai Codescu

Ionuţ Ţuţu

4

Contents

Invited talks

On Logic Embeddings and Gödel’s God . 8
Christoph Benzmüller

An Interface to Symbolic Methods . 10
K. Rustan M. Leino

Regular presentations

Integrating Athena with Algebraic specifications 12
Konstantine Arkoudas, Katerina Ksystra, Nikos Triantafyllou, and Petros
Stefaneas

Symbolic Execution by Language Transformation 14
Andrei Arusoaie, Dorel Lucanu, and Vlad Rusu

Programming Language Abstractions Based on Executable Algebraic
Semantics . 16

Irina Măriuca Asăvoae

Semantic Mining of Context Update Constructs in Imperative Languages . 18
Irina Măriuca Asăvoae, Mihail Asăvoae, and Adrián Riesco

An Institutional Approach to Positive Coalgebraic Logic 20
Adriana Balan, Alexander Kurz, and Jĭŕı Velebil

Autonomous Systems in Rewriting Logic . 22
Lenz Belzner

Arguing Safety Cases Formally . 24
Valent́ın Cassano and Tom Maibaum

Proving Properties of Concurrent Systems using Graph Transformations
and Event-B . 26

Simone A.C. Cavalheiro, Luciana Foss, and Leila Ribeiro

An Institutional Foundation for the K Semantic Framework 28
Claudia Elena Chiriţă and Traian Florin Şerbănuţă

A Theoretical Foundation for Programming Language Aggregation 30
Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Roşu

5

Coq as a dependently typed system to build safe concurrent programs . . . 32
Guillaume Claret and Yann Régis-Gianas

Heterogeneous refinement in HETS . 34
Mihai Codescu and Till Mossakowski

Term Graph Rewriting using Spans . 36
Andrea Corradini, Fabio Gadducci, and Tobias Heindel

Two institutions of finite-state methods . 38
Tim Fernando

(Co)algebraic semantics of heavy-weighted automata 41
Marie Fortin, Marcello Bonsangue, and Jan Rutten

Herbrand’s Theorem in Hybrid Institutions 44
Daniel Găină

On the Semantics of Helena Ensemble Specifications 46
Annabelle Klarl and Rolf Hennicker

An Institutional Framework for Heterogeneous Formal Development in UML 48
Alexander Knapp, Till Mossakowski, and Markus Roggenbach

What is a derived signature morphism? . 50
Ulf Krumnack, Till Mossakowski, and Tom Maibaum

Safety and Performance of the European Rail Traffic Management System:
A Modelling and Verification Exercise in Real Time Maude 52

Andrew Lawrence, Ulrich Berger, Markus Roggenbach, and Monika
Seisenberger

A canonical proof-theoretic approach to model theory 54
Carlos G. Lopez Pombo, Paula D. Chocrón, Ignacio Vissani, and Tom
Maibaum

Quasiary Specification Algebras and Logics 56
Mykola Nikitchenko

Proving liveness properties using abstract state machines and n-visibility . 58
Norbert Preining, Kokichi Futatsugi, and Kazuhiro Ogata

Improving the Quality of Use Cases via Model Construction and Analysis . 60
Leila Ribeiro, Érika Cota, Lucio Mauro Duarte, and Marcos A. de Oliveira

A Refinement Procedure for Inferring Side-Effect Constructs 61
Adrián Riesco, Irina Măriuca Asăvoae, and Mihail Asăvoae

Solving Queries over Modular Logic Programs 63
Ionuţ Ţuţu and José Luiz Fiadeiro

6

A Full Operational Semantics of Asynchronous Relational Networks 65
Ignacio Vissani, Carlos G. Lopez Pombo, Ionuţ Ţuţu, and José Luiz
Fiadeiro

Fibred Amalgamation and Fibred Equivalences 67
Uwe Wolter and Harald König

Fixed Point Logics as Institutions . 70
Kiouvrekis Yiannis and Stefaneas Petros

A SOC-Based Formal Specification and Verification of Hybrid Systems . . . 72
Ning Yu and Martin Wirsing

7

On Logic Embeddings and Gödel’s God

Christoph Benzmüller?

Freie Universität Berlin, Germany
c.benzmueller@fu-berlin.de

Logic embeddings provide an elegant means to formalize sophisticated non-
classical logics in classical higher-order logic (HOL, Church’s simple type theory
[11]). In previous work (cf. [4] and the references therein) the embeddings ap-
proach has been successfully applied to automate object-level and meta-level
reasoning for a range of logics and logic combinations with off-the-shelf HOL
theorem provers. This also includes quantified modal logics (QML) [7] and quan-
tified conditional logics (QCL) [3]. For many of the embedded logics few or none
automated theorem provers did exist before. HOL is exploited in this approach
to encode the semantics of the logics to be embedded, for example, Kripke se-
mantics for QMLs [12] or selection function semantics for QCLs [23]. In some
way, the indirect (relative to HOL) embeddings approach is orthogonal to la-
belled deductive systems [15], which employ (world-)labeling techniques for the
direct modeling and implementation of non-classical proof systems.

In recent work [6, 5] we have applied the embeddings approach to verify
and automate a philosophical argument that has fascinated philosophers and
theologists for about 1000 years: the ontological argument for the existence of
God [22]. We have thereby concentrated on Gödel’s [16], respectively Scott’s [21],
modern version of this argument, which employs a second-order modal logic, for
which, until now, no theorem provers were available. In our computer-assisted
study of the argument, the HOL provers LEO-II [8] and Satallax [10] have made
some interesting observations, some of which were unknown so far.

Ongoing and future work concentrates on the systematic study of Gödel’s
and Scott’s proofs. We have also begun to study more recent variants of the ar-
gument [2, 1, 9, 14, 13, 17, 18], which claim to remedy some fundamental problem
of Gödel’s and Scott’s proofs, known as the modal collapse. The long-term goal
is to work out a landscape of the detailled logic parameters (e.g., constant vs.
varying domains, rigid vs. non-rigid terms, logics KB vs. S4 vs. S5, etc.) under
which the proposed variants of the modern ontological argument hold or fail.

There is little related work [19, 20], and this focuses solely on the comparably
simpler, original ontological argument by Anselm of Canterbury.

Our work attests the maturity of contemporary interactive and automated
deduction tools for HOL and demonstrates the elegance and practical relevance
of the embeddings-based approach. Most importantly, our work opens new per-
spectives towards a computational metaphysics.

? This work has been supported by the German Research Foundation DFG under
grants BE2501/9-1 & BE2501/11-1.

8

Acknowledgement: The study of Gödel’s ontological proof of God’s existence is
joint work with Bruno Woltzenlogel Paleo.

References

1. A.C. Anderson and M. Gettings. Gödel ontological proof revisited. In Gödel’96:
Logical Foundations of Mathematics, Computer Science, and Physics: Lecture
Notes in Logic 6, pages 167–172. Springer, 1996.

2. C.A. Anderson. Some emendations of Gödel’s ontological proof. Faith and Philos-
ophy, 7(3), 1990.

3. C. Benzmüller. Automating quantified conditional logics in HOL. In F. Rossi,
editor, Proc. of IJCAI 2013, pages 746–753, Beijing, China, 2013.

4. C. Benzmüller. A top-down approach to combining logics. In Proc. of ICAART
2013, pages 346–351, Barcelona, Spain, 2013. SciTePress Digital Library.

5. C. Benzmüller and B. Woltzenlogel Paleo. Gödel’s God in Isabelle/HOL. Archive
of Formal Proofs, 2013.

6. C. Benzmüller and B. Woltzenlogel Paleo. Automating Gödel’s ontological proof
of god’s existence with higher-order automated theorem provers. In ECAI 2014,
volume 263 of Frontiers in Artificial Intelligence and Applications, pages 163 – 168.
IOS Press, 2014.

7. C. Benzmüller and L. Paulson. Quantified multimodal logics in simple type theory.
Logica Universalis (Special Issue on Multimodal Logics), 7(1):7–20, 2013.

8. C. Benzmüller, F. Theiss, L. Paulson, and A. Fietzke. LEO-II - a cooperative
automatic theorem prover for higher-order logic (system description). In Proc. of
IJCAR 2008, volume 5195 of LNCS, pages 162–170. Springer, 2008.

9. F. Bjørdal. Understanding gödel’s ontological argument. In T. Childers, editor,
The Logica Yearbook 1998. Filosofia, 1999.

10. C.E. Brown. Satallax: An automated higher-order prover. In Proc. of IJCAR 2012,
number 7364 in LNAI, pages 111 – 117. Springer, 2012.

11. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

12. M. Fitting and R.L. Mendelsohn. First-Order Modal Logic, volume 277 of Synthese
Library. Kluwer, 1998.

13. M. Fitting. Types, Tableaus, and Gödel’s God. Kluwer, 2002.
14. A. Fuhrmann. Existenz und Notwendigkeit — Kurt Gödels axiomatische Theologie.

In W. Spohn et al., editor, Logik in der Philosophie. Heidelberg (Synchron), 2005.
15. D.M. Gabbay. Labelled Deductive Systems. Clarendon Press, 1996.
16. K. Gödel. Appx.A: Notes in Kurt Gödel’s Hand, pages 144–145. In [22], 2004.
17. P. Hajek. A new small emendation of gödel’s ontological proof. Studia Logica: An

International Journal for Symbolic Logic, 71(2):pp. 149–164, 2002.
18. P. Hajek. Ontological proofs of existence and non-existence. Studia Logica: An

International Journal for Symbolic Logic, 90(2):pp. 257–262, 2008.
19. P.E. Oppenheimera and E.N. Zalta. A computationally-discovered simplification

of the ontological argument. Australasian J. of Philosophy, 89(2):333–349, 2011.
20. J. Rushby. The ontological argument in PVS. In Proc. of CAV Workshop “Fun

With Formal Methods”, St. Petersburg, Russia,, 2013.
21. D. Scott. Appx.B: Notes in Dana Scott’s Hand, pages 145–146. In [22], 2004.
22. J.H. Sobel. Logic and Theism: Arguments for and Against Beliefs in God. Cam-

bridge U. Press, 2004.
23. R.C. Stalnaker. A theory of conditionals. In Studies in Logical Theory, pages

98–112. Blackwell, 1968.

9

An Interface to Symbolic Methods

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Symbolic methods that give computer-aided organization and detailed checking
of proofs have become usable for many applications in mathematical domains. The
Coq [2] and Isabelle/HOL [11] interactive proof assistants are prime examples of tools
that rouinely support the writing of such proofs. While such systems provide unprece-
dented rigor in proofs, they are not always easy to use.

The last couple of decades have seen dramatic improvements in automatic satisfia-
bility-modulo-theories (SMT) solvers [1]. These have been used in a large number of
tools for software engineering and program analysis, where the logical conjectures to be
resolved, albeit large, tend to be mathematically shallow. It seems, however, that such
automatic techniques can also be applied to problems with more advanced mathematical
contents and more difficult theorems.

In this talk, I will present a glimpse of what a more automatic interface to dealing
with symbolic techniques can look like. I will do so by showing a number of examples
using the Dafny language and verifier [4]. Built on top of an SMT solver and initially
designed for verifying first-order imperative programs, Dafny now boasts support for
induction [5], co-induction [7], and higher-order functions [9] and proofs can be struc-
tured into human-readable calculations [8]. Importantly, the tool’s integrated develop-
ment environment constantly runs the verifier in the background and helps the user in
the development of proofs by keeping the available CPU cycles focused on what the
user is working on [10].

For other examples, see, e.g., [6, 0,3].

References

0. Nada Amin. How to write your next POPL paper in Dafny. Lecture at Microsoft Research,
July 2013. http://research.microsoft.com/apps/video/default.aspx?id=198423.

1. Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard: Version 2.0. In
Aarti Gupta and Daniel Kroening, editors, Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories, 2010.

2. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development —
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer, 2004.

3. K. Rustan M. Leino. Verification Corner. Channel on youtube.com. With various guests.
4. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In

Edmund M. Clarke and Andrei Voronkov, editors, LPAR-16, volume 6355 of LNCS, pages
348–370. Springer, April 2010.

5. K. Rustan M. Leino. Automating induction with an SMT solver. In Viktor Kuncak and An-
drey Rybalchenko, editors, Verification, Model Checking, and Abstract Interpretation — 13th
International Conference, VMCAI 2012, volume 7148 of LNCS, pages 315–331. Springer,
January 2012.

10

2

6. K. Rustan M. Leino. Automating theorem proving with SMT. In Sandrine Blazy, Christine
Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving — 4th Interna-
tional Conference, ITP 2013, volume 7998 of LNCS, pages 2–16. Springer, July 2013.

7. K. Rustan M. Leino and Michał Moskal. Co-induction simply - automatic co-inductive
proofs in a program verifier. In Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun, editors,
FM 2014: Formal Methods — 19th International Symposium, volume 8442 of LNCS, pages
382–398. Springer, May 2014.

8. K. Rustan M. Leino and Nadia Polikarpova. Verified calculations. In Fifth Working Confer-
ence on Verified Software: Theories, Tools, and Experiments (VSTTE 2013), May 2013.

9. K. Rustan M. Leino and Dan Rosén. Higher-order functions in Dafny. Dan Rosén’s research
internship, Microsoft Research, August 2014.

10. K. Rustan M. Leino and Valentin Wüstholz. The Dafny integrated development environment.
In Catherine Dubois, Dimitra Giannakopoulou, and Dominique Méry, editors, Proceedings
1st Workshop on Formal Integrated Development Environment, F-IDE 2014, volume 149 of
EPTCS, pages 3–15, April 2014.

11. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assis-
tant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

11

Integrating Athena with Algebraic specifications

Konstantine Arkoudas, Katerina Ksystra,
Nikos Triantafyllou, and Petros Stefaneas

Algebraic specification languages such as CafeOBJ [1], Maude [2] and CASL [3]
have well-known advantages for modeling digital systems. The specifications are
relatively simple, readable and writable, and can be executed and automatically
analyzed in various other ways to provide valuable information to the modelers.
In some cases, it is useful to attempt to prove that the model – usually couched
as a transition system – has certain properties. For that purpose, some algebraic
specification languages have been coupled with interactive theorem-proving
systems; CASL, for instance, has been interfaced with HOL/Isabelle [4].

We propose a framework of integration of CafeOBJ [5,6] with Athena [7],
a system based on general polymorphic multi-sorted first-order logic. Athena
integrates computation and deduction, allows for readable and highly structured
proofs, guarantees the soundness of results that have been proved, and also has
built-in mechanisms for general model-checking and theorem-proving, as well as
connections to state-of-the-art external systems for both. Our aim in this effort
is to combine the strengths of CafeOBJ [8,9] (most notably succinct, composable,
executable specifications based on conditional equational logic) with those of
Athena, namely, structured and readable proofs, and greater automation both
for proof and for counterexample discovery.

We illustrate our approach with a simple mutex algorithm. We demonstrate
five aspects of formal methods: specification, simulation, automated counterexam-
ple generation, automated theorem proving, and automated checking of structured
proofs in natural deduction style.

In our mutex example there is a set of processes, each of which is executing
code. At any point in time (i.e., at any system state), a process is either in some
critical section of the code or in some remainder (non-critical) section. When
a process p enters its critical section, the resulting state becomes locked. When
p exits the critical section, the resulting state is unlocked. For p to enter its
critical section in some state s, p must be enabled in s. A process p is enabled in
s iff p is in its remainder section in s and s is not locked. This is, therefore, the
effective condition of the enter state transition for a given process. The effective
condition of the exit transition is for the process to be in its critical section. We
have two observer functions, one that takes a state s and a process id p and tells
us what section of the code p is executing in s (critical or remainder), and a
function that takes a state s and tells us whether s is locked. We present the
specification of this algorithm in Athena and we prove that no more than one
process can be in its critical section at any one time. A completely automatic
proof by structural induction is obtained first, and then a more detailed – and
more explanatory – proof in natural-deduction style is given and automatically
checked for soundness. We also demonstrate a systematic method for simulating

12

the execution of the specified system that has been formalized in Athena, and
for discovering counterexamples to invariant conjectures.

When rewriting fails during a proof obligation in a given “proof score” (i.e.,
when the two sides of a desired identity do not reduce to the same normal form
by using all available equations as left-to-right rewrite rules), systems such as
CafeOBJ will inform the user of how far the two sides could be rewritten, and
this feedback often suggests lemmas that are necessary to complete the proof. As
future work, we plan to simulate this process in Athena by translating back from
Athena to CafeOBJ in order to help the formulation of intermediate lemmas. Our
approach could be used as a vehicle for integrating other algebraic specification
methods (such as Maude and CASL) with more conventional theorem-proving
systems based on first- or higher-order logic.

Acknowledgments This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS

References

1. Cafeobj. http://www.ldl.jaist.ac.jp/cafeobj
2. Maude. http://maude.cs.uiuc.edu
3. Casl. http://www.casl.umd.edu/about
4. Hol/isabelle. http://isabelle.in.tum.de/library/HOL
5. Diaconescu, R., Futatsugi, K.: CafeOBJ report: The language, proof techniques,

and methodologies for object-oriented algebraic specification. AMAST Series in
computing 6 (1998)

6. Diaconescu, R., Futatsugi, K., Ogata, K.: CafeOBJ: Logical foundations and method-
ologies. Computers and Artificial Intelligence 22(3-4) (2003) 257–283

7. Arkoudas, K.: Athena. http://proofcentral.org/athena/ (2004)
8. Futatsugi, K., Găină, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theoret-

ical Computer Science 464 (2012) 90–112
9. Găină, D., Lucanu, D., Ogata, K., Futatsugi, K.: On automation of OTS/CafeOBJ

method. In Iida, S., Meseguer, J., Ogata, K., eds.: Specification, Algebra, and
Software. Volume 8373 of LNCS. Springer (2014) 578–602

13

Symbolic Execution by Language Transformation

Andrei Arusoaie1, Dorel Lucanu1, and Vlad Rusu2

1 Faculty of Computer Science, Alexandru Ioan Cuza University, Iaşi, Romania
andrei.arusoaie@gmail.com,dlucanu@info.uaic.ro

2 Inria Lille Nord Europe, France vlad.rusu@inria.fr

In [1] we presented a language-independent symbolic execution framework
based on the formal operational semantics of programming languages, together
with an implementation of our approach in the K language-definition frame-
work [2]. Briefly, the approach in [1] consisted in transforming a language L
into a language Ls, so that symbolic execution of a program in L is, by defi-
nition, the standard execution of the same program seen as an element of Ls.
We proved that the resulting notion of symbolic execution has the properties
naturally expected of it (mutual simulation with concrete execution).

In this paper we present symbolic execution under a different angle, and
investigate the relationship between this notion of symbolic execution and the
one based on the Ls construction of [1]. The goal is to be able to implement
the new notion of symbolic execution (based on symbolic rewriting) in a setting
where only standard rewriting is available, such as the K framework with its
Maude backend, and to be able to do this for real-size programming languages.

Programming languages are tuples of the form L , ((Σ,Π),Cfg , T ,S) where
(Σ,Π) is a first-order signature, Cfg a distinguished sort for configurations
(which consists of code together with whatever information is required for exe-
cuting it - depending on the language, e.g., variable store, heap, stack; . . .); T is
a (Σ,Π)-model; and S is a set of reachability rules of the form ϕ⇒⇒⇒ ϕ′ defining
the operational semantics of L. For each language, the many-sorted signature
Σ contains a subsignature Σd which includes all the data sorts of the language
(e.g. integers, booleans, ... again, depending on the language being defined).

Our approach uses unification for formally defining symbolic execution. A
symbolic unifier of two terms t1, t2 is any substitution σ : var(t1) ∪ var(t2) →
TΣ(Z) for some set Z of variables such that σ(t1) = σ(t2). A concrete unifier of
terms t1, t2 is any valuation ρ : var(t1) ∪ var(t2) → T such that ρ(t1) = ρ(t2).
A symbolic unifier σ of two terms t1, t2 is a most general unifier of t1, t2 with
respect to concrete unification whenever, for all concrete unifiers ρ of t1 and t2,
there is a concrete unifier η : Z → T such that η ◦ σ = ρ. We prove that under
some conditions on the semantics of S (which can always be obtained, provided
that the only symbolic values are data) a unique most-general unifier exists.

Symbolic execution essentially consists of applying the semantical rules over
patterns using most general unifiers. Two patterns ϕ and ϕ′ are in relation ∼,
i.e. ϕ ∼ ϕ′, iff they match the same set of configurations (we write JϕK = Jϕ′K);
a configuration γ matches against a pattern ϕ , π ∧∧∧ φ if there is a valuation
ρ : Var → T such that ρ(π) = γ and ρ |= φ, i.e., for a certain valuation
of the variables occurring in the pattern, its condition φ is satisfied and the

14

configuration γ is an instance of the basic pattern π. ∼ is an equivalence relation
(we let [ϕ]∼ denote the equivalence class of ϕ). We define the symbolic transition
relation ⇒s

S by: [ϕ]∼ ⇒s
S [ϕ′]∼ iff ϕ , π ∧∧∧ φ, all the variables in var(π) have

data sorts, there is a rule α , ϕ1 ⇒⇒⇒ ϕ2 ∈ S with ϕi , πi ∧∧∧ φi for i ∈ {1, 2},
var(ϕ) ∩ var(α) = ∅, π1 and π are concretely unifiable, and [ϕ′]∼ = [σπ1

π (π2)∧∧∧
σπ1
π (φ ∧ φ1 ∧ φ2)]∼, where σπ1

π is the most general symbolic unifier of π, π1.,
extended as the identity substitution over the variables in var(φ1, ϕ2)\var(π, π1).

With this definition of symbolic execution we proved that there is a natural
relation between symbolic and concrete program execution:
– to every concrete execution there corresponds a feasible symbolic one;
– to every feasible symbolic execution there corresponds a concrete one;

where to executions correspond if they follow the same program path.
However, our definition of symbolic execution requires rules to be applied in

a symbolic manner, i.e., using symbolic unifiers as shown above.
A question that arises is then: how to implement this symbolic rewriting in a

setting where only standard rewriting is available, such the K language-definition
framework? The answer is to adapt the approach from [1]: to transform L into
a new language definition Ls, and to ensure that execution by rewriting in Ls

coincides with execution by symbolic rewriting in L. In [1] we considered a Σd-
model D which interprets the data sorts and operations, and a free Σ-model T
generated by D which interprets the non-data sorts as ground terms over the
signature (Σ \Σd) ∪⋃

d∈Data Dd (the elements of the carrier sets Dd are added
as new constants in the signature). The components of Ls are automatically
obtained from L. In particular, the symbolic model T s is freely generated by Ds,
where Ds is D enriched with symbolic values from the symbolic signature Σs.

In this paper we consider a more general class of models T , which is rich
and expressive enough for defining real-size languages. Our goal is to give an
axiomatic definition of T and a procedure to built T s from T . The axiomatic
definition for T captures the essence of what the model is, without constraining
it too much (e.g., not requiring it to be freely generated). We are also interested
in establishing the equality between ⇒s

S (the symbolic transition relation of
L, defined above) and ⇒Ss , which is the transition relation of the symbolic
language Ls. This would ensure that (our new notion of) symbolic execution is
still well-behaved (i.e., in mutual simulation) with respect to concrete execution.

References

1. Andrei Arusoaie, Dorel Lucanu, and Vlad Rusu. A generic framework for symbolic
execution. In 6th International Conference on Software Language Engineering, vol-
ume 8225 of LNCS, pages 281–301. Springer Verlag, 2013. Also available as a
technical report http://hal.inria.fr/hal-00853588.

2. Traian Florin Serbanuta, Andrei Arusoaie, David Lazar, Chucky Ellison, Dorel Lu-
canu, and Grigore Rosu. The k primer (version 3.3). In Proceedings of International
K Workshop (K’11), ENTCS. Elsevier, 2013. To appear.

15

Programming Language Abstractions Based on
Executable Algebraic Semantics

Irina Măriuca Asăvoae

VERIMAG/Universitè Joseph Fourier, France
irina.asavoae@imag.fr

The program analysis and verification methods are generally characterized by the
infamous EXPTIME complexity. This generates an effectiveness problem for the pro-
gram analysis/verification, problem which is traditionally by-passed by the abstract in-
terpretation [5,4]. Namely, the abstract interpretation framework standardizes a method
for reducing the complexity of the analysis/verification methods by a coherent projec-
tion of the program’s state space. The projection is actually a mapping from the state
space of the concrete system into the state space of an abstract system such that the
mapping preserves the transition relations. By coherent projection we understand that
the class of properties currently analyzed/verified is reflected from the abstract system
into the concrete system. Furthermore, sharp abstractions may also require an associated
projection of the concrete transition operators into the abstract ones [3]. The coherent
projection is founded by a Galois connection between the concrete and the abstract sys-
tems which are, in turns, viewed as lattices. The abstract interpretation framework is
developed on top of the operational semantics and there exists an abundance of litera-
ture on practical instantiations of it [9].

On the other hand, the rewriting logic already has established its own notion of ab-
straction, namely the algebraic simulation [8,7]. In more details, the standard notion of
simulation is incrementally mirrored into the rewriting logic under the hypothesis that
the systems being related are described as rewriting systems. The presentation in [8,7]
is eloquently sustained at each step by examples instantiating the concrete and the ab-
stract rewrite systems and by providing the definition of the algebraic simulation also
as a rewrite system. The beauty of this approach lies in the unified rewriting logic rep-
resentation of both the systems and the simulation. Moreover, the approach is automat-
ically executable using the tools implementing the rewriting logic [2]. Consequently,
the rewriting logic and the algebraic simulations provide an appealing framework for
specifying abstractions using the algebraic denotational semantics.

The view of the current work is drawn from the above stated facts. One fact is that
Rewriting Logic Semantics unifies the operational semantics and the algebraic denota-
tional semantics. Another fact is that the abstractions already proved to be a sine qua
non in the field of analysis and verification. These two facts induce the natural idea
of a systematic transportation of the results from the abstract interpretation into the
Rewriting Logic Semantics. As such, the current work studies the transformation of
Galois connections into theoroidal maps with a direct application to a transformation
from LLVM intermediate representation (LLVM–IR) [1] into MIR—a language with
reduced set of instructions which is used for program analysis. Namely, the concrete
programming language, LLVM–IR, is first syntactically mapped into the abstract pro-
gramming language, MIR. Then, we define a projection of the syntactic mapping at

16

the level of the rewriting rules defining the semantics of these two languages. Next, we
study to what extend the syntactic mapping of the two languages preserves the memory
model of the two languages. This last part allows us to to argue to what extend we can
say that the properties verified on MIR are verifyaing properties of LLVM–IR. Finally,
we adjust the proposed transformation to the stages of abstraction described in [11], and
we exemplify using the notorious predicate abstraction on the abstract language. The
choice of predicate abstraction is justified by the existence of consistent documentations
in both worlds, namely in abstract interpretation [6] and in rewriting logic [10].

References

1. LLVM language reference manual. http://llvm.org/docs/LangRef.html
2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.L. (eds.):

All About Maude - A High-Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic, Lecture Notes in Computer Science, vol. 4350. Springer
(2007)

3. Cousot, P.: Design of syntactic program transformations by abstract interpretation of seman-
tic transformations (invited talk). In: Codognet, P. (ed.) Proceedings of the Seventeenth In-
ternational Conference, ICLP 2001. pp. 4–5. LNCS 2237, Springer, Berlin, Paphos, Cyprus
(November/December 2001)

4. Cousot, P.: Formal verification by abstract interpretation. In: Goodloe, A., Person, S. (eds.)
4th NASA Formal Methods Symposium (NFM 2012). Lecture Notes in Computer Science,
vol. 7226, pp. 3–7. Springer-Verlag, Heidelberg (2012)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Symposium on Principles of
Programming Languages. pp. 238–252. ACM Press (1977)

6. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Proceedings of the
9th Conference on Computer-Aided Verification. pp. 72–83. Springer-Verlag (1997)

7. Meseguer, J., Palomino, M., Martı́-Oliet, N.: Equational abstractions. Theor. Comput. Sci.
403(2-3), 239–264 (2008)

8. Meseguer, J., Palomino, M., Martı́-Oliet, N.: Algebraic simulations. J. Log. Algebr. Program.
79(2), 103–143 (2010)

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag New
York, Inc. (1999)

10. Palomino, M.: A predicate abstraction tool for Maude. Documentation and tool available at
http://maude.sip.ucm.es/˜miguelpt/bibliography.html

11. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract interpretations.
In: Levi, G. (ed.) Static Analysis, 5th International Symposium, SAS ’98, Pisa, Italy, Septem-
ber 14-16, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1503, pp. 351–380.
Springer (1998)

2

17

Semantic Mining of Context Update Constructs
in Imperative Languages

Irina Măriuca Asăvoae1, Mihail Asăvoae1, Adrián Riesco2

1 VERIMAG/Université Joseph Fourier, France
{irina.asavoae, mihail.asavoae}@imag.fr
2 Universidad Complutense de Madrid, Spain

ariesco@fdi.ucm.es

In the view of an easier development, complex software systems are con-
structed in a modular fashion. Modularity has various structural representa-
tions which vary according to the programming paradigm where it appears. For
example, the modularity in imperative languages is given by functions and proce-
dures, in object-oriented languages by classes and interfaces, while in declarative
programming by modules. Besides its structural characteristic, the modularity
carries functional information which sets the relation between the modularity
units. For example, in imperative languages the relation between modules is
given by function calls, in object-oriented languages by the class inheritance,
while in declarative programming we find a similar module hierarchy. During
the development of the software systems both structural and functional charac-
teristics of the modularity are heavily exploited to shape the final product.

An important part of the software development is the system evaluation
stage, which includes testing, analysis, and verification. Due to the increased
system complexity, it is advisable to interleave the system construction with its
evaluation. Moreover, the theoretical results for evaluation methods show that an
efficient evaluation should be designed in a structural inductive fashion, by focus-
ing first on the unit evaluation and then moving to the compositional evaluation.
Consequently, the complexity of the systems corroborated with the efficiency re-
quirement of their evaluation methods induce the necessity of preserving and
exploiting the modular characteristics of the system during its evaluation.

Rewriting logic [3] proposes an algebraic and executable setting to integrate
the construction and the evaluation of systems. In the current work we consider
these systems as programs written in some programming language. The integra-
tion methodology proposed by rewriting logic starts with S—a formal executable
semantics of the programming language used for the system development. S pro-
vides the set of all concrete executions, for any program correctly constructed
w.r.t. the language syntax and for all possible input data. Here we consider S
to be from the family of imperative languages and we focus on inferring the
modularity aspects in imperative languages. To achieve this, we apply semantic
mining, i.e., we analyze S in order to extract the programming language con-
structs which induce the functional aspects of the modularity. We define S as
a rewriting logic theory [3] which is executable and benefits of tool support via
the Maude system [1], an implementation of the rewriting logic framework.

18

2 Irina Măriuca Asăvoae, Mihail Asăvoae, Adrián Riesco

We presented in [4] a methodology for performing generic intraprocedural
slicing, while [5] improved it by presenting a generic interprocedural slicing.
However, the generality of the interprocedural slicing depends on the automatic
inference of the modularity attributes of the language in study. Recall that for im-
perative languages we identify as modularity features the function calls through
which each function activates its own context. We call context-updates the lan-
guage syntactic constructs that denote the function calls. Note that, modulo
variations of parameter passing, the context-updates induce the functional as-
pect of the modularity in imperative languages and we show in [5] that they are
a key element in generic interprocedural slicing.

This paper extends our work on generic slicing by showing how to extract
context-update constructs c from the given language semantics, S, and how to
use them as input for the interprocedural slicing for S-programs described in [5].
Our method for obtaining the context-update language constructs is, in fact,
a homomorphism H which takes the algebra defined by S and maps it into an
algebra which has as operations only the language constructs c.

For the construction of H, we consider as given both S, the sort(s) in S for
the language constructs con, and the sort(s) defining the memory of the program
mem. The construction of H explores the rewrite rules in S, starting with the
rules which rewrite terms of sort con, in search of a subsequent set of rules which
builds a stack of mem terms. The results of H are the context-updates. We exem-
plify the method on a particular S—an extension of the WHILE language [2] in
which we introduce variable scoping, i.e., homonymous variables behave differ-
ently w.r.t. the context where they are declared and used. We call this extension
WhileF which is a simple imperative language with assignments, conditions, and
loops, enriched with constructs like functions and local variables.

A more refined feature of context-updates is the parameter passing and we
aim to further study the context-updates towards this particular aspect.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude: A High-Performance Logical Framework, Lecture Notes in
Computer Science, vol. 4350. Springer (2007)

2. Hennessy, M.: The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. John Wiley & Sons (1990)

3. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002)

4. Riesco, A., Asavoae, I.M., Asavoae, M.: A generic program slicing technique based
on language definitions. In: Mart́ı-Oliet, N., Palomino, M. (eds.) Proceedings of
the 21st International Workshop on Algebraic Development Techniques, WADT
2012. Lecture Notes in Computer Science, vol. 7841, pp. 248–264. IFIP International
Federation for Information Processing (2013)

5. Riesco, A., Asavoae, I.M., Asavoae, M.: A generic program slicing
technique based on language definitions. In: Preproceedings of the
20th Workshop of Rewriting Logic and Its Applications, WRLA 2014.
http://users.dsic.upv.es/workshops/wrla2014/#proceedings (2014)

19

An Institutional Approach to Positive
Coalgebraic Logic

Adriana Balan1, Alexander Kurz2, and Jǐŕı Velebil3 ?

1 University Politehnica of Bucharest, Romania
adriana.balan@mathem.pub.ro
2 University of Leicester, UK

ak155@mcs.le.ac.uk
3 Faculty of Electrical Engineering, Czech Technical University in Prague, Czech

Republic
velebil@math.feld.cvut.cz

Institutions provide a general framework for describing logical systems; in
particular, such is the case for the coalgebraic modal logic, built upon the obser-
vation that (finitary) predicate liftings generalize modal operators from Kripke
frames to coalgebras over arbitrary Set-functors. It was shown in [3,6] that this
specific logic carries the structure of an institution, with Set-endofunctors as sig-
natures and (opposites of) natural transformations between them as morphisms
of signatures, models being the associated categories of coalgebras.

Coalgebraic modal logic has its roots in the modal logic of Kripke frames.
The latter is given by atomic propositions, Boolean operations, and a unary
box preserving finite meets. In [4], Dunn gave an axiomatisation of the positive
fragment of this logic, by atomic propositions, lattice operations, and unary box
and diamond, but no negation.

In [1] and in the subsequently expanded version [2], we have generalized his
results from Kripke frames to coalgebras for arbitrary functors preserving weak
pullbacks. More in detail, an arbitrary functor T : Set → Set induces by duality
a (finitary) functor L : BoolAlg → BoolAlg on the category of Boolean algebras
(the categorical counterpart of the corresponding modal logic), so that the free
L-algebras are exactly the Lindenbaum algebras of the modal logic. Following
Dunn’s ideas, we use to the category DLat of (bounded) distributive lattices as
a base for the positive fragment of (the logic corresponding to) L, that is, for a
(strongly finitary) functor L′ : DLat → DLat which, in turn, by duality, arises
from a (locally monotone) functor T ′ : Poset → Poset on the category Poset of
posets and monotone maps. An important point is that we have to work in a
Poset-enriched setting, to guarantee that the modal operations (like � and ♦ in
positive modal logic) are monotone, and that the logic L′ admits a monotone
presentation.

To obtain an institutionalized approach of the results in [1,2], we had to con-
sider a Poset-enrilched version of the notion of institution, with models lying in
Poset-Cat and sentences in Poset. The motivating example, that we shall denote
by Ins′, has locally monotone functors on Poset as signatures and their categories

? Supported by the grant no. P202/11/1632 of the Czech Science Foundation.

20

of coalgebras as models. Examples of models (coalgebras for locally monotone
functors) include ordered automata (automata with a partial order of states
and monotone transitions), or frames for distributive substructural logics. To
fit within the framework of Poset-enrichment, the satisfaction relation between
models and sentences has to be monotone itself, where models (coalgebras) are
ordered through simulations. This requires that the signature functors must have
the Beck-Chevalley property (the Poset-analogue of preserving weak pullbacks
property).

The institution Ins mentioned in the first paragraph, from [3,6], can then be
adapted to our Poset-enriched setting, by considering Set and BoolAlg discretely
Poset-enriched.

Then the institutions of coalgebraic modal logic Ins (restricted to signature
functors that preserve weak pullbacks) and Ins′ are related by a (Poset-enriched)
morphism of institutions Ins → Ins′, which sends T : Set → Set to its canonical
extension T ′ : Poset → Poset (called posetification in [1,2]), realized as a com-
pletion with respect to Poset-enriched colimits. The construction T 7→ T ′ 7→ L′

gives the maximal positive fragment of L (thus generalizes Dunn’s theorem),
and allows to define the morphism of institutions on the level of sentences.

References

1. Balan, A., Kurz, A., Velebil, J.: Positive Fragments of Coalgebraic Logics. In:
CALCO2013, LNCS 8089, 51–65 (2013)

2. Balan, A., Kurz, A., Velebil, J. Positive Fragments of Coalgebraic Logics, extended
version, submitted, available at arXiv:1402.5922, 38 pp. (2014)

3. Ĉırstea, C. An institution of modal logics for coalgebras, J. Logic Alg. Progr. 67(1-
2), 87–113 (2006)

4. Dunn, J. M.: Positive Modal Logic. Studia Logica 55, 301–317 (1995)
5. Goguen, J., R. Burstall. Institutions: Abstract Model Theory for Specification and

Programming. J. Assoc. Comput. Mach. 39(1), 95–146 (1995)
6. Pattinson, D. Translating logics for coalgebras. In: WADT2002, LNCS 2755, 393–

408 (2003)
7. Worrell, J. Coinduction for recursive data types: partial order, metric spaces and

Ω-categories, Electron. Notes Theor. Comput. Sci. 33, 367–386 (2000)

21

Autonomous Systems in Rewriting Logic ?

Lenz Belzner

LMU Munich, PST Chair
belzner@pst.ifi.lmu.de

Autonomous systems are on the rise, and modern software systems more and
more are enabled to take decisions at runtime autonomously in order to react
adequately to unforeseen situations and to reach system goals in the face of un-
certainty. While these abilities are appealing, their incorporation into a system
gives rise to new challenges: System specification has to incorporate knowledge
about the domain, as well as algorithms that allows an agent to interpret its
knowledge in a particular situation in order to derive goal based behaviour.
Also, verification of certain behavioural properties of systems that act and take
decisions autonomously before actually executing them may be a valuable con-
sideration. Thus, approaches to specification for autonomous systems should
provide features that allow to perform verification tasks.

Relational Markov decision processes (RMDPs) [1,2] serve as a formal frame-
work for sequential decision making under uncertainty, and previous work of the
author introduced the encoding of RMDPs in rewriting logic [3]. An action pro-
gramming language has been introduced that allows system designers to specify
behavioural constraints for agents [3,4]. Specified agent behaviour is evaluated at
runtime by term rewriting according to system specification, taking into account
system state, domain non-determinism and specified system goals to allow for
autonomous decision making. Offline computation of optimal policies that are
maximizing reward at runtime can be achieved by performing symbolic value
iteration for rewrite theories [5].

The rewriting logic approach to symbolic artificial intelligence differs in three
main points from alternative approaches as for example the situation calculus
[6]. First, specification and reasoning is possible for arbitrary first-order algebraic
domain representations. Thus, the representational distance between problem
domain and actual encoding is minimized, easing specification and communi-
cation about it [7]. Second, specification of domain dynamics as rewrite rules
offers an intuitive solution to the notorious frame problem [6], alleviating speci-
fication complexity by avoiding the need to explicitly specify system properties
that remain unchanged by action execution. Finally, rewrite theory specifications
are executable in the Maude language (given they satisfy certain admissibility
requirements), which offers a rich toolset for system verification [8].

The talk will expand on two current research directions in the field. First,
confluence, coherence and termination of the language specification are proved,
supported by the Maude CRChC tool [9]. This result provides a formal under-
pinning to the specification approach, and ensures executability of specifications
in the Maude language.

? This work has been partially funded by the EU project ASCENS, 257414.

22

2 Lenz Belzner

Second, while previous work provided answers to the question ”What should
an agent do (provided it knows everything about its environment)?”, current work
copes with the question ”What should an agent know?”. Typically, an agent’s
knowledge about its environment is limited, and acquisition of knowledge, e.g.
through sensing or communication, is a costly task in terms of system resources
as e.g. energy, memory or bandwidth. Still, there may be valuable information
available that would provide justification to some goal based behaviour.

In order to decide on what information to gather, it is argued that replacing
rewriting with narrowing when interpreting an action program in a setting with
limited knowledge can optimize an agent’s attempts to gather knowledge w.r.t.
system specification. The main idea is that instead of matching current informa-
tion about the environment with general knowledge about action consequences
when performing rewriting, these are unified when performing narrowing. Uni-
fication provides a set of hypotheses to reason about and evaluate, serving as
indicators about the value of acquiring particular information. Possible knowl-
edge acquisition actions (e.g. active sensing or requesting information through
communication) are evaluated w.r.t. their cost and possible future reward, al-
lowing an agent to autonomously decide what information to gather.

References

1. Bellman, R.: A markovian decision process. Indiana Univ. Math. J. 6 (1957)
679–684

2. Sanner, S., Boutilier, C.: Approximate linear programming for first-order MDPs.
In: UAI, AUAI Press (2005) 509–517

3. Belzner, L.: Verifiable decisions in autonomous concurrent systems. In Kühn, E.,
Pugliese, R., eds.: COORDINATION. Volume 8459 of Lecture Notes in Computer
Science., Springer (2014) 17–32

4. Belzner, L.: Action programming in rewriting logic. TPLP 13(4-5-Online-
Supplement) (2013)

5. Belzner, L.: Value iteration for relational MDPs in rewriting logic. In Endriss, U.,
Leite, J., eds.: STAIRS. Frontiers in Artificial Intelligence and Applications, IOS
Press (2014) to appear

6. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. Illustrated edn. The MIT Press, Massachusetts, MA
(2001)

7. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7-8)
(2012) 721–781

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L., eds.: All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic. Volume 4350 of Lecture
Notes in Computer Science., Springer (2007)

9. Durán, F., Meseguer, J.: A church-rosser checker tool for conditional order-sorted
equational maude specifications. [10] 69–85

10. Ölveczky, P.C., ed.: Rewriting Logic and Its Applications - 8th International Work-
shop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Paphos, Cyprus,
March 20-21, 2010, Revised Selected Papers. In Ölveczky, P.C., ed.: WRLA. Vol-
ume 6381 of Lecture Notes in Computer Science., Springer (2010)

23

Arguing Safety Cases Formally

Valent́ın Cassano1 and Thomas S.E. Maibaum1

Department of Computing and Software, McMaster University
cassanv@mcmaster.ca tom@maibaum.org

Abstract

In the certification of safety critical systems, evidence-based safety regimes are
starting to gain prominence over the more traditional process-based ones. For
instance, evidence-based safety regimes are being put in place in order to demon-
strate compliance with automotive safety standards, with medical device regula-
tions, and with commercial airplane software-based systems safety requirements
(q.v. [1], [2], [3], respectively).

In brief, whereas a process-based safety regime typically requires adherence
to a particular set of prescriptions which must be followed in order to assure that
a system is safe for its intended use, an evidence-based safety regime typically
requires the production of what is known as a safety case. In essence, a safety
case is intended to make a compelling case that adequate levels of safety have
been achieved. To this end, a safety case is seen as being comprised of: an explicit
set of safety goals which must be met, evidence that these goals are actually met,
and a structured argument linking evidence to safety goals. There are two main
assumptions underlying this notion of a safety case. The first of these asserts
that: “assuring that a system is safe without adequate evidence of this being
the case is, or better yet, should be, unconvincing”. The second of these asserts
that: “in the absence of a structured argument linking evidence to safety goals,
evidence is left unexplained; hence, a shadow of doubt is casted over whether
safety goals have actually been met”.

However, in spite of some significant benefits, evidence-based safety regimes
are not a panacea. What can be seen as their greatest virtue, the notion of a
safety case, is also their ‘Achilles’ heel’. Issues such as completeness of safety
goals, scientific rigour and sufficiency of evidence, and validity of safety argu-
ments, i.e., those linking evidence to safety goals, are seldom adequately ad-
dressed. In this work, we will focus on studying safety arguments from a formal
standpoint, so that their validity can be assessed in a rigorous manner.

Of course, this formal study would be far more straightforward if safety ar-
guments were to resort to the typical elements of deductive logic in discussions
related to the way in which evidence supports the claim that safety goals are
actually met. But this faint hope exposes its hollowness after a quick review of
some typical safety cases (q.v. [4]). It is common to encounter in them judgments
of experts, hasty inductive generalizations, and fallacious uses of language, all
things which are far from being logical. Complicating this picture, the safety
community considers that only in simple cases do safety arguments agree with

24

what traditional logical studies view as their formal counterpart. More precisely,
in traditional logical studies, arguments are formalized as proofs, with proofs
being defined with respect to a judiciously chosen set of rules of inference. These
rules of inference are usually those of classical logic or variants such as those
dealing with modalities. However, statements such as “data such as D, normally
entitles one to make a claim such as C”, found everywhere in safety arguments,
do not seem to correspond well with the type of statements made by traditional
rules of inference. Instead, we view them as being better captured by those ar-
gument patterns discussed by Toulmin in [5]. In that work, Toulmin advances
that argument patterns which are found in everyday reasoning are usually com-
prised of claims that are established from data resorting to, so called, warrants.
Warrants are statements acting as ‘bridges’ between claims and the data which
support them, such as the one mentioned above. Toulmin then goes on and dis-
cusses that while “some warrants authorize us to accept a claim unequivocally,
given the appropriate data [...] others authorize us to make the step from data
[...] either tentatively, or else subject to conditions, exceptions, or qualifications”.
Whereas the first kind of warrant can be seen as agreeing with the traditional
view of a rule of inference, warrants of the second kind do not, and are better
understood as being defeasible.

Aiming at presenting a context in which safety arguments could be studied
formally, in this work we will discuss in which way Toulmin’s defeasible argu-
ment patterns can be seen as being captured by default rules (q.v. [6]). In doing
this, we resort to a proposed new interpretation of default rules: we view them
as indicating claims which are held tentatively. We will comment on how this
formalization reflects some observations we have made while studying safety
arguments. In turn, potential contributions of our approach include a formal
assessment of: the internal coherence and validity of safety arguments, the rel-
evance of those premises acting in support of a claim, and the strength of a
conclusion a safety argument aims at establishing. Moreover, we contend that,
since ‘bridge’ steps between data and the claims they support are made explicit,
our approach eases the analysis of fallacies in safety arguments; resulting in
them being less questionable from a logical standpoint and increasing the over-
all confidence that is placed on the safety of a system. Lastly, we consider that
our approach enables for ‘safety argument patterns’ to be elicited from safety
arguments, with the obvious benefits this entails.

References

1. Int. Standard Organization: ISO 26262: Road Vehicles – Functional Safety (2011)
2. Food and Drug Administration: 510(k) Clearance and Premarket Approval (2014)
3. RTCA SC-205, EUROCAE WG-12: DO-178C: Software considerations in airborne

systems and equipment certification (2012)
4. Dependability and Security Research Group at UVa: Safety cases repository (2006)
5. Toulmin, S.E.: The Uses of Argument. Cambridge University Press (2003)
6. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132

25

Proving Properties of Concurrent Systems using
Graph Transformations and Event-B?

Simone A. C. Cavalheiro1, Luciana Foss1, and Leila Ribeiro2

1 {simone.costa,lfoss}@inf.ufpel.edu.br
Federal University of Pelotas (UFPEL), Pelotas, Brazil

2 leila@inf.ufrgs.br

Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Graph transformation (GT) is a formal specification language well-suited to
applications in which states have a complex topology and in which behavior
is essentially data-driven, that is, events are triggered basically by particular
configurations of the state [5]. Reactive systems, like protocols for distributed
and mobile systems, and model-driven transformations are examples of this class
of applications. GT provides a formal yet intuitive (and visual) specification
language, offering a rich notion of states (represented as graphs) and a simple
but powerful notion of state change (defined by rules). In addition, in the GT
approach, concurrency and non-determinism appear naturally: many events (rule
applications) may happen concurrently, if they all are enabled, and the choice
of occurrence between conflicting events is non-deterministic.

To allow the specification of practical applications, two extensions of the basic
GT formalism are particularly relevant: Negative application conditions (NACs)
[8] and attributes[6]. NACs allow the specification of situations that shall prevent
rule application, in addition to the situations which allow rule application. The
use of this feature typically reduces the number of rules required to specify a
system, and also results in clearer rules. The use of elements of data types as
attributes of vertices and edges, and also of variable and equations in rules, also
helps in making GT specifications more intuitive (and smaller).

There is a variety of graphical tools for specifying, executing and analysing
GTs (see [7] for a comparison of some of them). There are syntactic analysis
techniques, like critical pairs and concurrent rules, and they can be performed
by tools like AGG even in the presence of NACs and attributes. Model checking
approaches in GT (like GROOVE [9]), however, handle NACs and attributes in
a limited way, since the construction of the state-space in the case of GTs may
lead to huge structures, even in the case without attributes.

Besides model checking, another well-established approach used for verifica-
tion purposes is theorem proving. In this technique, both the system and its
desired properties are expressed as formulas in some mathematical logic. Theo-
rem proving can deal directly with infinite state spaces and it relies on techniques
such as structural induction to prove properties over infinite domains. In [3,4]
we introduced an approach to GTs, providing an encoding of graphs and rules
into relations, that enabled the use of logic formulas to express properties of

? This work is part of the VeriTeS project, supported by FAPERGS and CNPq

26

reachable states and allowed the use of Event-B [1] theorem provers to analyze
properties of GTs [2,10]. In this paper we extend the approach to deal with
GTs with NACs and attributes. In [4] we defined the theoretical foundations of
the logical description of GTs with attributes, which is the basis for the work
presented here. Our main contribution is a technique to allow the analysis of
infinite-state GTs with NACs and attributes by using theorem proving. The ap-
proach is based on a translation of GTs with NACs and attributes to event-B.
Our proposal complements the existing approaches for GTs analysis.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edn. (2010)

2. da Costa, S.A.: Relational Approach of Graph Grammars. Ph.D. thesis, INF,
UFRGS, Brazil (2010)

3. da Costa, S.A., Ribeiro, L.: Formal verification of graph grammars using mathe-
matical induction. ENTCS 240, 43–60 (2009)

4. da Costa, S.A., Ribeiro, L.: Verification of graph grammars using a logical ap-
proach. Science of Computer Programming 77(4), 480 – 504 (2012)

5. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of graph
grammars and computing by graph transformation: vol. 2: applications, languages,
and tools. World Scientific, River Edge, USA (1999)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed
attributed graphs and graph transformation based on adhesive hlr categories. Fun-
damta Informaticae 74(1), 31–61 (2006)

7. Fuss, C., Mosler, C., Ranger, U., Schultchen, E.: The jury is still out: A comparison
of Agg, Fujaba, and PROGRES. ECEASST 6 (2007)

8. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3-4), 287–313 (1996)

9. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfalz,
J., Nagl, M., Böhlen, B. (eds.) Applications of Graph Transformations with Indus-
trial Relevance (AGTIVE). LNCS, vol. 3062, pp. 479–485. Springer (2004)

10. Ribeiro, L., Dotti, F.L., da Costa, S.A., Dillenburg, F.C.: Towards theorem proving
graph grammars using event-b. ECEASST issue on GraMoT 2010 30 (2010)

27

An Institutional Foundation for
the K Semantic Framework

Claudia Elena Chiriţă and Traian Florin Şerbănuţă

Faculty of Mathematics and Computer Science, University of Bucharest
claudia.elena.chirita@gmail.com, traian.serbanuta@gmail.com

The K framework is an executable semantic framework based on rewriting and
used for defining programming languages, computational calculi, type systems
and formal-analysis tools. It was developed as an alternative to the existing
operational-semantics frameworks and over the years has been employed to define
actual programming languages, to study runtime verification methods and to
develop analysis tools such as type checkers, type inferencers, model checkers
and verifiers based on Hoare-style assertions. A comprehensive overview of the
framework can be found in [1]. Its associated tool [2] enables the development
of modular and executable definitions of languages, and moreover, it allows the
user to test programs and to explore their behaviour in an exhaustive manner,
facilitating in this way the design of new languages.

Driven by recent developments on the theoretical foundations of the K se-
mantic framework [3,4] and on the established connections with other semantic
frameworks and formal systems such as reduction semantics, Hoare logic and
separation logic, we propose an institutional formalisation [5] of the logical
systems on which the K framework is based: matching and reachability logic.
This would allow us to extend the usage of K by focusing on its potential as a
formal specification language, and furthermore, through its underlying logics,
to establish rigorous mathematical relationships between K and other similar
languages, enabling the integration of their verification tools and techniques.

Matching logic [3] is a formal system used to express properties about the
structure of mathematical objects and language constructs, and to reason about
them by means of pattern matching. Its sentences, called patterns, are built in
an inductive manner, similarly to the terms of first-order logic, using operation
symbols provided by a many-sorted signature, as well as Boolean connectives and
quantifiers. The semantics is defined in terms of multialgebras, which interpret
patterns as subsets of their carriers. This leads to a ternary satisfaction relation
between patterns, multialgebras and elements (or states) of multialgebras.

Unlike first-order logic, matching logic is difficult to formalise faithfully as
an institution due to the ternary nature of its satisfaction relation and to the
fact that patterns are classified by sorts, much in the way the sentences of
branching temporal logics are classified into state or path sentences and evaluated
accordingly. We overcome this limitations by relying on the concept of stratified
institution developed in [6], which extends institutions with an abstract notion
of model state and defines a parameterised satisfaction relation that takes into
account the states of models. We further develop this concept by adding classes,

28

which are determined by signatures, associated with sentences, and parameterise
both the stratification of models and the satisfaction relation. We show that both
matching and computation-tree logic can be described as stratified institutions
with classes, and we adapt the canonical construction of an ordinary institution
from a stratified one presented in [6] to take into consideration the role of classes.

The main advantage of using stratified institutions with classes to formalise
matching logic is that we can extend the construction of reachability logic de-
scribed in [4] from matching to other logical systems. Reachability logic is a
formalism for program verification through which transition systems that corre-
spond to the operational semantics of programming languages can be described
using reachability rules; these rules rely on patterns and generalise Hoare triples
in order to specify transitions between program configurations (similarly to term-
rewrite rules). Therefore, reachability logic can be seen as a language-independent
alternative to the axiomatic semantics and proof systems particular to each lan-
guage. In our work, we define an abstract institution of reachability logic over
an arbitrary stratified institution with classes such that by instantiating this
parameter with matching logic we recover the original notion of reachability.

Having both matching and reachability logic defined as institutions allows
us to integrate them into the logic graphs of institution-based heterogeneous
specification languages such as HetCasl [7]. As an immediate result, the K
framework can inherit the powerful module systems developed for specifications
built over arbitrary institutions, with dedicated operators for aggregating, renam-
ing, extending, hiding and parameterising modules. In addition, this will enable
us to combine reachability logic and the tool support provided by K with other
logical systems and tools. Towards that end, as a preliminary effort to integrate
the K framework into Hets [8], we describe comorphims from matching and
reachability logic to the institution of first-order logic.

References

1. Roşu, G., Şerbănuţă, T.F.: K overview and SIMPLE case study. Electronic Notes in
Theoretical Computer Science 304(0) (2014) 3–56

2. Şerbănuţă, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Roşu, G.: The
K primer (version 3.3). Electronic Notes in Theoretical Computer Science 304(0)
(2014) 57–80

3. Roşu, G.: Matching logic: A logic for structural reasoning. Technical Report
http://hdl.handle.net/2142/47004, University of Illinois (Jan 2014)

4. Roşu, G., Ştefănescu, A., Ciobâcă, Ş., Moore, B.M.: One-path reachability logic. In:
Proceedings of the 28th Symposium on Logic in Computer Science (LICS’13), IEEE
(June 2013) 358–367

5. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. J. ACM 39(1) (1992) 95–146

6. Aiguier, M., Diaconescu, R.: Stratified institutions and elementary homomorphisms.
Information Processing Letters 103(1) (2007) 5–13

7. Mossakowski, T.: HetCasl–heterogeneous specification. Language summary (2004)
8. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In

Grumberg, O., Huth, M., eds.: TACAS. Volume 4424 of Lecture Notes in Computer
Science., Springer (2007) 519–522

29

A Theoretical Foundation for Programming
Language Aggregation ?

Ştefan Ciobâcă1, Dorel Lucanu1, Vlad Rusu2, and Grigore Roşu1,3

1 “Alexandru Ioan Cuza” University, Romania
2 Inria Lille, France

3 University of Illinois at Urbana-Champaign, USA

A matching logic semantics of a programming language is given by a
tuple L = (Cfg ,S ,Σ ,Π , T ,A,�T), where Φ = (S,Σ,Π) is a first-order signature
including the abstract syntax of the language as well as the syntax of the various
operations in the needed mathematical domains, Cfg ∈ S is a distinguished sort
of configurations, A is a (possibly infinite) set of operational semantics rules of
the language, T is the model of configurations of the language merged together
with the needed mathematical domains, and the relation �T is the transition
relation defined by the operational semantics. The semantic rules A, also called
reachability rules, are pairs ϕ⇒ ϕ′ of matching logic formulae. For instance,
the semantics of the assignment operator can be given by a rule of the form

〈x = I C〉 〈S〉 ∧ isDefined(x, S)⇒ 〈C〉 〈update(S, x, I)〉
where C is the rest of the code to be executed and S is the store represented as
a map from variables names to their values. The left-hand side and right-hand
side of ⇒ are examples of matching logic formulae.

As discussed in [2], conventional operational semantics of programming lan-
guages can be faithfully encoded as matching logic semantics.

The aggregation operation takes as input two language definitions LL and LR
an returns a new definition L′ capable of executing pairs of programs in the two
languages according to their initial semantics. This operation is useful, e.g., in
defining and proving equivalence of programs written in different languages or to
prove the correctness of a compiler. In this paper we investigate the theoretical
foundations for defining the aggregation operation for languages whose semantics
is given by using matching logic.

The construction of L′ is summarized by the following figure:

(S0, Σ0, Π0, T0) (CfgR,SR,ΣR,ΠR, TR,AR)

(CfgL,SL,ΣL,ΠL, TL,AL) (S,Σ,Π, ∅, T) (Cfg ′,S ′,Σ ′,Π ′, T ′,A′)

hR

hL

h′
L

h′
R

ι

? This paper is supported by the Sectorial Operational Programme Human Resource
Development (SOP HRD), financed from the European Social Fund and by the
Romanian Government under the contract number POSDRU/159/1.5/S/137750.

30

It is known that the category of the first-order signatures admits push-outs,
so (S,Σ,Π) is given by the foliowing push-out diagram:

(S0, Σ0, Π0) (SR, ΣR, ΠR)

(SL, ΣL, ΠL) (S,Σ,Π)

hR

hL

h′
L

h′
R

The model T ′ = T is obtained by the amalgamation theorem, for which we
give a constructive proof. The configurations in Cfg ′ are pairs of configurations
CfgL ×CfgR and the axioms A′ includes the rules AL]AR, modified such that
they are applied now on the new configurations.

We also establish an extensionality result: a reachability rule ϕ ⇒ ϕ′ is a
semantic consequence of A′ iff its projections (reachability rules in the original
languages) are semantic consequences of AL and AR, respectively.

The aggregated language is useful, for example, to prove equivalence of pro-
grams. If we have a pair of programs 〈SL, SR〉 that both compute the sum of the
first n natural numbers:

SL ≡ s := 0; for i := 1 to n do s := s + i

SR ≡ let sum i = if i == 0 then 0 else i + sum (i - 1) in sum n

We can show that SL and SR are equivalent (compute the same result)
by showing a partial correctness property of the aggregated program 〈SL, SR〉:
〈SL, SR〉 ⇒ 〈s 7→ n(n + 1)/2, n(n + 1)/2〉. Showing partial correctness can be
done using reachability logic [3] or Hoare-like logics over the aggregated language.
Based on the aggregated language, we have also developed a method of proving
mutual equivalence [1].

A challenge is to organise the matching logic-based semantics of programming
languages as a category and to investigate if the aggregated language can be
obtained as a colimit in this category.

References

1. Ş. Ciobâcă, D. Lucanu, V. Rusu, and G. Roşu. A Language-Independent Proof
System for Mutual Program Equiv. (rev.). Technical Report 14-01, UAIC, 2014.

2. G. Roşu and A. Ştefănescu. Checking reachability using matching logic. In OOP-
SLA, pages 555–574. ACM, 2012.

3. G. Roşu, A. Ştefănescu, Ştefan Ciobâcă, and B. M. Moore. One-path reachability
logic. In LICS, pages 358–367, 2013.

2

31

Coq as a dependently typed system to build safe
concurrent programs

June 30, 2014

Concurrent programs are notoriously hard to write correctly. They are dif-
ficult to test and to reason about, mainly because of their non-deterministic
nature. Many type systems have been proposed in an attempt to write safe-
by-construction concurrent programs. Safety properties include termination (in
particular the absence of dead-lock) and the absence of execution error. Fol-
lowing the type based approach to safety, some type systems have been added
to theoretical languages such as the π-calculus [3]. Others have been embedded
into existing, strongly typed, general purpose languages such as Haskell [2] or
Idris [1], through typed concurrent primitives. We present a novel approach to
type parallel programs, encoding concurrent primitives into an existing depen-
dently typed and purely functional language.

We chose the language Coq, based on the Calculus of Inductive Construc-
tions. This calculus exploits the Curry-Howard isomorphism to combine proofs
and programs in an elegant manner. Coq is a mature system, recipient of the
ACM Software System Award, and had been the subject of extensive research
and applications for more than twenty years.

In most programming languages, if an expression e has a type A it implies
that "if the expression terminates and has no error, then its value is of type T ".
But e may never return a correct value, and we have no information about the
side-effects made by e. On the contrary, Coq is a purely functional language.
If an expression e has a type A then it terminates without error and returns a
value of type A with no side-effect. Still, we can encode effects mimicking the
way imperative effects are handled in Haskell with monads. In Coq, dependent
types simplify the description of precise effects. We will define an effects system
in Coq with concurrency, in the aim to lead to safer programming constructs.

To represent a concurrent computation with effects returning a value of
type A, we define a new type CS,E A in Coq:

CS,E A = S → S × (A+ E + CS,E A)

A computation takes as argument a state of type S and returns a new state plus
one of these three results:
• a value of type A if the computation terminated without error;

• an error of type E;

• a new computation of type CS,E A (a pause point) representing the re-
maining work to be done to terminate the evaluation. This gives us inter-
mediate steps to pause the evaluation of a computation.

132

A first key aspect is that the type CS,E A is inductively defined so, if we iterate
the evaluation steps, a computation will always terminate to a value or an
error. A second key aspect is that the concurrency is represented using the
pause mechanism. A computation with pauses explicits the steps leading to the
final result, describing how the state evolves during evaluation. In particular,
we will define the concurrent execution of two computations sharing a state by
interleaving their evaluations at the pause points.

We combine two kinds of computations in a commutative and associative
way with the] operator:

CS1,E1 A] CS2,E2 A = CS1×S2,E1+E2 A

Polymorphic effects are expressed using the ∀ operator of Coq over the state or
the error types. We define an operator bind to sequence two computations:

bind : ∀S E AB, CS,E A→ (A→ CS,E B)→ CS,E B

We encode inputs / outputs and non-termination effects into the computa-
tions type. For concurrency, we define two primitive operators:

par : ∀S E AB, CH×S,E A→ CH×S,E B → CH×S,E (A×B)
atomic : ∀S E A, CS,E A→ CS,E A

The par operator executes two computations in parallel and returns the pair of
outputs. The scheduling is preemptive and the thread switches are driven by an
entropy state H, an infinite stream of booleans. The atomic operator enforces
the atomicity of a computation, hiding the intermediate steps of evaluation.

The complete implementation is available on https://github.com/clarus/
concurrent-computations. We implemented other typed operators, like the
parallel iteration of a function f with effects over a list l:

iter_par : ∀S E A, (A→ CH×S,E unit)→ listA→ CH×S,E unit

We also implemented a TODO-list manager, communicating with a virtual user-
interface and a server through an event system. All events are handled concur-
rently, and threads share a mutable data model using atomic transactions.

As a future work, we aim to execute efficiently expressions in CS,E A by
compilation to an existing concurrent programming language. For now, we
simulate executions with the eval function:

eval : ∀S E A, CS,E A→ S → S × (A+ E)

The definability of the eval function in Coq formally proves that all programs
in CS,E A terminate. The eval function also proves that errors can only be of
type E. In particular programs in CS,∅A are error-free.

References
[1] Edwin Brady and Kevin Hammond. Correct-by-construction concurrency:

Using dependent types to verify implementations of effectful resource usage
protocols. 2010.

[2] Simon P. Jones. Beautiful Concurrency. O’Reilly Media, Inc., 2007.

[3] Naoki Kobayashi. Type systems for concurrent programs. 2003.

233

Heterogeneous refinement in HETS

Mihai Codescu and Till Mossakowski

Otto-von-Guericke University of Magdeburg

Refinement is an important concept in specification theory [6], relating ab-
stract requirement specifications with more specific design specifications and
implementations.

In [8] we introduced an extension of CASL [5] with a simple refinement lan-
guage that adds means to formalize entire developments of software systems in
the form of refinement trees, which capture the structure of implementations of
the system. The refinement language generalizes and subsumes the architectural
specification language of CASL. The difference is that architectural specifications
specify only branching points in the development tree, while the refinement lan-
guage allows for more flexibility in combining trees, including further refinement
of some of their leaves. The language has been complemented in [2, 3] with cal-
culi for checking correctness and consistency of refinements and is supported by
the Heterogeneous Tool Set HETS [10].

The language definition follows the CASL convention of orthogonality be-
tween different layers of the language. That is, refinements are defined over an
arbitrary institution that should satisfy very mild conditions. The structuring
of specifications is also independent of the refinement language. The most basic
form of refinement is refinement between specifications. Refinements can then be
combined to form chains of refinements, or we can record the decision to decom-
pose the task of implementing a specification into smaller subtasks by writing a
refinement to an architectural specification. We can flexibly record further de-
cisions regarding the design of a component either directly in the architectural
specification (by allowing the specification of a unit to be itself a refinement) or
after the architectural specification was written (by further refining its compo-
nents).

In practice, it is natural that the formalisms used at different levels of the
refinement trees of a software system should be different. Indeed, a logic allowing
for more expressivity may be better suited for fixing the requirements, while a
formalism closer to a programming language will appear closer to the leaves of
the tree, to facilitate generation of code that should be correct by construction.
One example detailed in [7] is the generation of C or Java code from a system
of UML diagrams (where each type of UML diagram is formalised as a different
institution).

Foundations for heterogeneous specification over a graph of institutions and
translations include Grothendieck institutions [4], that allows to combine spec-
ifications written in different logics to end up in one logical systems, and het-
erogenous logical environments [9], that allow specifications written in different
formalisms to coexist and be interlinked in a so-called distributed specification.

34

In this paper, we generalize the refinement language of CASL to the het-
erogeneous case, for the first time. We discuss which of the settings mentioned
above, Grothendieck institutions and heterogeneous logical environments, is bet-
ter suited for this purpose. Making some features of the language heterogeneous
is a very straightforward task in both situations - we can easily capture re-
finement with change of logic as a refinement along a heterogeneous signature
morphism. Other constructs raise more difficulties. To make architectural spec-
ifications heterogeneous, one has to solve not only the problem of discharging
statically amalgamability conditions in their semantics [5] but also to deal with
the fact that colimits of heterogeneous diagrams can only be approximated in
the general case [1].

References

1. M. Codescu and T. Mossakowski. Heterogeneous colimits. In F. Boulanger, C. Gas-
ton, and P.-Y. Schobbens, editors, MoVaH’08 Workshop on Modeling, Validation
and Heterogeneity. IEEE press, 2008.

2. M. Codescu and T. Mossakowski. Refinement trees: calculi, tools and applications.
In A. Corradini and B. Klin, editors, Algebra and Coalgebra in Computer Science,
CALCO’11, volume 6859 of Lecture Notes in Computer Science, pages 145–160.
Springer, 2011.

3. Mihai Codescu, Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. Speci-
fication refinements: calculi, tools and applications. Submitted.

4. R. Diaconescu. Grothendieck institutions. Applied categorical structures, 10:383–
402, 2002.

5. Peter D. Mosses (Ed.). Casl Reference Manual. LNCS 2960 (IFIP Series).
Springer, 2004.

6. Hartmut Ehrig and Hans-Jörg Kreowski. Refinement and implementation. In
Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors, Alge-
braic Foundations of Systems Specification, IFIP State-of-the-Art Reports, pages
201–242. Springer, 1999.

7. Alexander Knapp, Till Mossakowski, and Markus Roggenbach. An institu-
tional framework for heterogeneous formal development in uml, 2014. CoRR
abs/1403.7747.

8. T. Mossakowski, D. Sannella, and A. Tarlecki. A simple refinement language for
Casl. In Jose Luiz Fiadeiro, editor, WADT 2004, volume 3423 of LNCS, pages
162–185. Springer; Berlin, 2005.

9. T. Mossakowski and A. Tarlecki. Heterogeneous logical environments for dis-
tributed specifications. In A. Corradini and U. Montanari, editors, WADT 2008,
volume 5486 of Lecture Notes in Computer Science, pages 266 –289. Springer, 2009.

10. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424
of Lecture Notes in Computer Science, pages 519–522. Springer-Verlag Heidelberg,
2007.

35

Term Graph Rewriting using Spans?

Andrea Corradini1, Fabio Gadducci1, and Tobias Heindel2

1 [andrea,fabio](at)di.unipi.it, Dipartimento di Informatica, Università di Pisa, Italia
2 theindel(at)inf.ed.ac.uk, School of Computer Science, University of Edinburgh, UK

So far, only a few categorical approaches to the rewriting of term graphs have
been proposed, all of them based either on the Single- (spo) or on the Double-
Pushout Approach (dpo) to graph transformation. The goal was essentially to
rephrase in a more declarative and algebraic way the classical set-theoretical,
algorithmic approach by Barendregt et al. [1], relating term rewriting with the
transformation of directed (typically acyclic) graphs, where the sharing of sub-
terms, commonly used in implementations of functional languages, can be made
explicit. The idea was also to apply in this framework general results already
developed for the algebraic approaches to graph transformation, e.g. those con-
cerning parallelism and concurrency.

The most relevant contributions in this line include [7], which is based on the
dpo approach in the category HG of hypergraphs; and [8, 2], which are based on
the spo and the dpo approach, respectively, in the category TG of term graphs,
considered as a sub-category of HG. All such approaches share with [1] the result
of soundness with respect to term rewriting (any term graph reduction using
some encoding of term rules can be simulated by term rewriting). As [1], they
also lack completeness, i.e. there could be term reductions that are not possible
on term graphs, due to the presence of sharing. In fact, if two identical sub-
terms happen to be shared in a term graph, both of them have to be rewritten
in exactly the same way; instead, two identical sub-terms of a term could be
rewritten using different rules.

L

m

��
(1)

K

(2)

loo r //

��

R

m∗

��
G D

l∗oo r∗ // H

Fig. 1: A SqPO derivation.

To fix this weakness, one would need term
graph rules able to “unfold” or “unravel” a
term graph, creating copies of shared sub-
terms. This paper presents some preliminary
results addressing this problem, exploiting
the Sesqui-Pushout (sqpo) approach, origi-
nally introduced in [4]. In this approach, a
rule p = (L l K r R) consists of a span of morphisms l and r, which are not
necessarily monic. Given a match, i.e. a morphism L m G, a transformation
G ⇒p,m H from G to H exists if the diagram in Fig. 1 can be constructed, such
that (1) is a final pullback complement (fpbc), and (2) is instead a pushout.

The main feature of sqpo is the ability to specify the cloning or copying of
structures, which is impossible both in the spo (by definition) and in the dpo
(as it would make rewriting non-deterministic). Furthermore, for left-linear rules
it subsumes both the dpo and the spo, under mild conditions.

? The work of the first and of the second author has been partially supported by the
EU FP7-ICT IP ASCENS and by the MIUR PRIN CINA.

36

2 A. Corradini, F. Gadducci and T. Heindel

Unlike the pushout complement characterization of the left square (1) in the
diagram in Fig. 1, which is used in the classical dpo approach, its characteriza-
tion as final pullback complement is defined by a universal property, thus if it
exists it is necessarily unique. General conditions for the existence of pushouts
in the category of term graphs are discussed for example in [2]. In this note we
focus instead on conditions for the existence of final pullback complements.

We first show that sqpo rewriting is possible for arbitrary term graph rules if
matches are regular monos, also by exploiting the fact that TG is rm-adhesive [6]
(also known as quasi-adhesive [9]), as shown in [3]. This has little applicability,
though, as regular monos must preserve empty nodes, which informally means
that variables in a rule cannot be instantiated. Nevertheless, even if for arbitrary
monic matches sqpo rewriting is not possible in general, we are able to show that
it works if the nodes duplicated by the rule are empty, i.e. have no outgoing edges.
This is sufficient for some unsharing rules we are interested in.

Finally, we report on more complex conditions that are sufficient for the
existence of fpbcs, as well as on conditions guaranteeing that a fpbc actually
is a pushout complement as well, a condition required in the recently introduced
reversible sesqui-pushout approach [5].

References

1. Barendregt, H., van Eekelen, M., Glauert, J., Kennaway, J., Plasmeijer, M., Sleep,
M.: Term graph reduction. In: de Bakker, J., Nijman, A., Treleaven, P. (eds.) PARLE
1987. LNCS, vol. 259, pp. 141–158. Springer (1987)

2. Corradini, A., Rossi, F.: Hyperedge replacement jungle rewriting for term rewriting
systems and logic programming. Theoretical Computer Science 109, 7–48 (1993)

3. Corradini, A., Gadducci, F.: On term graphs as an adhesive category. In: Fernandez,
M. (ed.) TermGraph 2004. vol. 127(5), pp. 43–56 (2005)

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)

5. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout
rewriting for NACs. In: König, B., Giese, H. (eds.) ICGT 2014. LNCS, vol. 8571,
pp. 161–176. Springer (2014)

6. Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories.
Theory and Applications of Categories 27(3), 27–46 (2012)

7. Hoffmann, B., Plump, D.: Implementing term rewriting by jungle evaluation.
RAIRO - Theoretical Informatics and Applications 25, 445–472 (1991)

8. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,
H., Kreowski, H.J., Rozenberg, G. (eds.) Graph-Grammars and Their Application
to Computer Science 1990. LNCS, vol. 532, pp. 490–504. Springer (1991)

9. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO - Theoret-
ical Informatics and Applications 39(3), 511–545 (2005)

37

Two institutions of finite-state methods

Tim Fernando

Trinity College Dublin, Ireland
Tim.Fernando@tcd.ie

Abstract. Goguen and Burstall’s notion of an institution is applied
to two declarative representations of finite-state methods, one based on
Monadic Second-Order Logic, the other on Kripke semantics over deter-
ministic accessibility relations. Two institutions are defined, with a view
to relating and possibly combining them in useful ways.

1 Introduction

Introduced to cope with the proliferation of logical systems in computer science,
the concept of an institution (Goguen and Burstall 1992) has been studied in-
tensely and applied widely (e.g. Diaconescu 2012). At the center of an institution
are relations |=Σ of satisfaction between models and sentences of various sig-
natures Σ, organized in a category, relative to which models and sentences are
presented through functors. This set-up is applied below to two declarative rep-
resentations of finite-state methods, one based on Monadic Second-Order Logic
(MSO), the other on Kripke semantics for modal logic. Two institutions, I1 and
I2, are outlined in turn, with a view to relating and possibly combining them
in useful ways. (Separately, I1 is useful for conceptions of time given by runs of
automata, and I2 for object-oriented knowledge bases).

2 I1: reducts and compression

For any finite alphabet Σ, Büchi’s Theorem (e.g. Theorem 7.21, page 124, Libkin
2010) says a language L ⊆ Σ+ is regular iff for some sentence ϕ in the set MSOΣ

of MSO-sentences over Σ,

L = {s ∈ Σ+ | s |=Σ ϕ}.

Now, for any subset A of Σ, the set MSOA of MSO-sentences over A is a subset
of MSOΣ , and we might expect to reduce instances of |=Σ given by MSOA to
|=A, mapping a string s ∈ Σ+ to a string fA(s) ∈ A+ such that

for any ϕ ∈ MSOA, s |=Σ ϕ ⇐⇒ fA(s) |=A ϕ.

However, no such function fA exists; the MSO{a}-sentence ∀x Pa(x) (putting
a at every string position x) is satisfied by all strings in {a}+ but not all in
{a, b}+. The problem is, however, easy enough to fix; expand the alphabet Σ of

38

strings against which sentences in MSOΣ are interpreted to the set 2Σ of subsets
of Σ (i.e., the power set of Σ), allowing into a string position any number of
symbols a ∈ Σ. Redefining satisfaction |=Σ between (2Σ)+ and MSOΣ , we have
whenever A ⊆ Σ and s ∈ (2Σ)+,

(†) for any ϕ ∈ MSOA, s |=Σ ϕ ⇐⇒ ρA(s) |=A ϕ

where ρA(s) is the A-reduct of s, intersecting s componentwise with A

ρA(α1 · · ·αn) := (α1 ∩A) · · · (αn ∩A)

(Fernando 2014). For any set Φ large enough so that Σ belongs to the set Fin(Φ)
of finite subsets of Φ, (†) is the satisfaction condition for the institution with

(i) signature category Fin(Φ) partially ordered by ⊆
(ii) sentence functor sen0 : Fin(Φ) → Set mapping A ∈ Fin(Φ) to MSOA, and

(A,B) such that A ⊆ B ∈ Fin(Φ) to the inclusion sen0(A,B) : MSOA ↪→
MSOB (ϕ 7→ ϕ), and

(iii) model functor Mod0 : Fin(Φ)op → Set mapping A ∈ Fin(Φ) to (2A)+,
and (B,A) such that A ⊆ B ∈ Fin(Φ) to Mod0(B,A) : (2B)+ → (2A)+,
s 7→ ρA(s).

For infinite models (including the real line R, with Φ chosen so that R ⊆ Φ),
it is useful to compose ρA with block compression bc, which given a string s,
compresses blocks αn of n > 1 consecutive occurrences in s of the same symbol
α to a single α, leaving s otherwise unchanged

bc(s) :=




bc(αs′) if s = ααs′

α bc(βs′) if s = αβs′ with α 6= β
s otherwise.

Observe that bc(s) is stutter-free, where a string α1α2 · · ·αn is stutter-free if
αi 6= αi+1 for i from 1 to n − 1. If each symbol αi is construed as a stretch
of time, bc implements the slogan “no time without change” (with bc(s) = s
iff s is stutter-free). Now, for the institution I1, we keep the same signature
category, but adjust the remaining components, defining sen1(A) = 2A×MSOA,
sen1(A,B) : sen1(A) ↪→ sen1(B), Mod1(A) = {bc(s) | s ∈ (2A)+}, Mod1(B,A) :
Mod1(B)→ Mod1(A), s 7→ bc(ρA(s)), and

s |=Σ
1 (C,ϕ) ⇐⇒ bc(ρC(s)) |=Σ ϕ

for s ∈ Mod1(Σ) and (C,ϕ) ∈ sen1(Σ), respecting the satisfaction condition.

3 I2: labelled deterministic transitions

Fix a large set Lab of labels. The objects of the signature category Sign2 of I2
are regular languages L ⊆ Lab+, and the Sign2-morphisms from signatures L
to L′ form the hom-set

Sign2(L,L′) = {(L, l, L′) | l ∈ Lab∗ and (∀l′ ∈ L) ll′ ∈ L′}

39

using the null string for identities, and concatenating for composition. For (L, l, L′) ∈
Sign2(L,L′), the label l is applied to

(i) a modal operator 〈l〉 by I2’s sentence functor sen2 : Sign2 → Set

sen2(L, l, L′) : sen2(L)→ sen2(L′), ϕ 7→ 〈l〉ϕ

and to

(ii) deterministic transitions in a partial function F : Q×Lab∗ ⇁ Q (induced in
reverse from its restriction to Q× Lab, specifying Lab-atomic steps) by I2’s
model functor Mod2 : Sign2

op → Set

Mod2(L) = {q ∈ Q | (∀l ∈ L) (q, l) ∈ domain(F)}
Mod2(L′, l, L) : Mod2(L′)→ Mod2(L), q′ 7→ F (q′, l)

making the satisfaction condition

q′ |=L′
2 〈l〉ϕ ⇐⇒ F (q′, l) |=L

2 ϕ

for q′ ∈ Mod2(L′) and ϕ ∈ sen2(L), as in the Kripke semantics for 〈l〉.

References

R. Diaconescu 2012. Three decades of institution theory. In Jean-Yves Beziau
(ed.), Universal logic: an anthology , pages 309 – 322, Springer.

T. Fernando 2014. Incremental semantic scales by strings, TTNLS, ACL archive,
http://anthology.aclweb.org//W/W14/W14-1408.pdf.

J.A. Goguen and R.M. Burstall 1992. Institutions: Abstract Model Theory for
Specification and Programming, J. ACM 39: 95–146.

L. Libkin 2010. Elements of Finite Model Theory . Springer.

40

(Co)algebraic semantics of heavy-weighted

automata

Marie Fortin1,2, Marcello Bonsangue2,3, and Jan Rutten2,4

1École Normale Supérieure de Cachan, France
2Centrum Wiskunde & Informatica (CWI), The Netherlands

3LIACS - Leiden University, The Netherlands
4Radbound University Nijmegen, The Netherlands

June 30, 2014

Weighted automata are a generalization of non-deterministic automata in
which each transition carries a weight [4]. This weight is an element of a semir-
ing, representing, for example, the cost or probability of taking the transition.
Weighted automata have many different areas of application, such as language
processing, speech recognition, and image processing. More recently, weighted
automata have been used to solve counting problems, first in [5] with a procedure
called coinductive counting, then in [3] with the counting automata methodology.

Whereas non-deterministic automata either accept or reject a word, weighted
automata associate with each word the cost of its execution. Their semantics
is thus defined in terms of weighted language (also called formal power series),
which are functions mapping words to weights.

Weighted languages form themselves a semiring, and thus can be chosen as
the set of weights. We obtain heavy-weighted automata: automata in which
each transition is labeled by a weighted language.

Such automata have already been introduced in [3], where they are called
counting automata, and are used to give a compact representation of some com-
binatorial problems. One of our motivations here is to adapt the definitions given
of counting automata to a coalgebraic setting, already existing for traditional
weighted automata (see e.g. [5], [1]), and to try to formalize a more general
framework for the reduction of some well-shaped infinite automata, based on
the examples given in [3].

Our second motivation to the introduction of heavy-weighted automata is
to provide something similar to what generalized automata (where transitions
are labeled by regular expressions) are to ordinary automata. In particular,
we will see that Brzozowski-McCluskey’s state elimination method ([2],[7]) to
compute the regular expression associated with a finite automaton also works
for weighted automata.

1

41

Though heavy-weighted automata can be seen as ordinary weighted au-
tomata over the semiring of weighted languages, their semantics as such (given
in terms of weighted languages over the semiring of weighted languages) is not
so interesting. Instead, we want to define the semantics of heavy-weighted au-
tomata in terms of (ordinary) weighted languages. We propose four equivalent
ways to define it:

• by giving a system of equations linking the semantics of the different states

• by first computing the semantics in terms of weighted languages over the
semiring of weighted languages, and then mapping it to a weighted lan-
guage with ordinary weights

• in terms of final homomorphisms of coalgebras. The set of weighted lan-
guages is the final coalgebra for the functor S × (−)A, which means that
from any S × (−)A-coalgebra, there is a unique homomorphism of coalge-
bras to the set of all weighted languages. Heavy-weighted automata are
not themselves S × (−)A-coalgebras, but they can be embedded into one,
using some kind of determinization procedure (as introduced in [6]). We
can then use the final S × (−)A-homorphism to define their semantics.

• by giving a procedure that transform a heavy-weighted automaton into
an ordinary weighted automaton. This is done by composing ordinary
weighted automata that recognise the weighted languages labeling the
transitions of the heavy-weighted automaton.

The second part of our contribution consists in some examples of the useful-
ness of heavy-weighted automata. First, we give an adaptation of Brzozowski
and McCluskey’s state elimination method to weighted automata, which al-
lows us to simplify a weighted automaton and, in the finite case, to compute a
regular expression for the weighted language it recognises. Secondly, we show
how heavy-weighted automata can be used to give a finite representation of
some well-shaped, infinite weighted automata recognising algebraic weighted
languages.

References

[1] F. Bonchi, M. M. Bonsangue, M. Boreale, J. J. M. M. Rutten, and A. Silva. A
coalgebraic perspective on linear weighted automata. Inf. Comput., 211:77–
105, 2012.

[2] J. Brzozowski and J. Mccluskey, E. J. Signal flow graph techniques for
sequential circuit state diagrams. Electronic Computers, IEEE Transactions
on, EC-12(2):67–76, April 1963.

[3] R. D. Castro, A. Ramı́rez, and J. L. Ramı́rez. Applications in enumerative
combinatorics of infinite weighted automata and graphs. Scientific Annals
of Computer Science, 24(1), 2014.

2

42

[4] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[5] J. J. M. M. Rutten. Coinductive counting with weighted automata. Journal
of Automata, Languages and Combinatorics, 8(2):319–352, 2003.

[6] A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M. Rutten. Generalizing
determinization from automata to coalgebras. Logical Methods in Computer
Science, 9(1), 2013.

[7] D. Wood. Theory of Computation. Harper & Row, 1987.

3

43

Herbrand’s Theorem in Hybrid Institutions

Daniel Găină

Research Center for Software Verification
Japan Advanced Institute of Science and Technology (JAIST)

daniel@jaist.ac.jp

Abstract

Hybrid logics [1] are a brand of modal logics that allows direct reference to the
possible worlds/states in a simple and very natural way through the so-called
nominals. This feature has several advantages from the point of view of logic
and formal specification. For example, it becomes considerably simpler to define
proof systems in hybrid logics [2], and one can prove results of a generality that
is not available in non-hybrid modal logic. In specifications of dynamic systems
the possibility of explicit reference to specific states of the model is an essential
feature. The hybrid logical framework considered here is very general, formalised
internally to abstract institutions [5].

In this paper we investigate a series of model-theoretic properties of hybrid
logics in an institution-independent setting such as basic set of sentences [3],
substitution [4] and reachable model [9, 8]. While the definition of basic set of
sentences is a straightforward extension from a basic institution to its hybrid
counterpart, the notion of substitution needs much consideration. Establishing
an appropriate concept of substitution is the most difficult part of the whole
enterprise to construct an initial model of a given hybrid theory and prove a
variant of Herbrand’s theorem.

Initial semantics [6] is closely related to good computational properties of
logical systems and it plays a crucial role for the semantics of abstract data
types and of logic programming. For example, initiality supports the execution
of specification languages through rewriting, thus integrating efficiently formal
verification of software systems into modelling. Our approach to initiality is
layered and is intimately linked to the structure of sentences [7]. The existence
of initial models of sets of atomic sentences is assumed in abstract setting but
is developed in concrete examples. Then we show that the initiality property is
closed to certain constructors for sentences.

The second main contribution of the paper is a variant of Herbrand’s theorem
for hybrid institutions, which reduces the satisfiability of a query with respect
to a hybrid theory to the search of a suitable substitution. The institution-
independent status of the present study makes the results applicable to a multi-
tude of (concrete) hybrid logics including those obtained from hybridisation of
non-conventional logics used in computer science.

44

References

1. P. Blackburn. Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic Journal of the IGPL, 8(3):339–365, 2000.

2. T. Braüner. Hybrid Logic and its Proof-Theory. In Applied Logic Series, volume 37.
Springer, 2011.

3. R. Diaconescu. Institution-independent Ultraproducts. Fundamenta Informaticæ,
55(3-4):321–348, 2003.

4. R. Diaconescu. Herbrand Theorems in arbitrary institutions. Inf. Process. Lett.,
90:29–37, 2004.

5. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, 39(1):95–146,
1992.

6. J. A. Goguen and J. W. Thatcher. Initial algebra semantics. In SWAT (FOCS),
pages 63–77. IEEE Computer Society, 1974.

7. D. Găină and K. Futatsugi. Initial semantics in logics with constructors. Journal
of Logic and Computation, 2012. doi: 10.1093/logcom/exs044.

8. D. Găină, K. Futatsugi, and K. Ogata. Constructor-based Logics. Journal of Uni-
versal Computer Science, 18(16):2204–2233, aug 2012.

9. D. Găină and M. Petria. Completeness by Forcing. J. Log. Comput., 20(6):1165–
1186, 2010.

45

On the Semantics of
Helena Ensemble Specifications

«extended abstract»

Annabelle Klarl and Rolf Hennicker

Ludwig-Maximilians-Universität München
Germany??

Advanced software systems involve a large number of autonomic, possibly
heterogeneous components collaborating for some global goal in a distributed
and highly dynamic environment. The EU project ASCENS [1,3] develops foun-
dations, techniques and tools to support the whole life cycle of such systems
(Autonomic Service Component ENSembles). In this context, we have developed
the Helena approach [2], which provides a formal model for the specification of
ensembles as goal-oriented communication groups on top of a component-based
platform. A conceptual key point of Helena is that components can play differ-
ent roles and that they can participate (under certain roles) in several ensembles,
possibly at the same time. By adopting specific roles, components can join and
leave ensembles as needed and they can change their behavior according to the
required functionalities in a particular collaboration.

Helena is based on a rigorous typing discipline, distinguishing between types
and instances. Component instances, classified by component types, are consid-
ered as carriers of basic information relevant across many ensembles. Whenever a
component instance joins an ensemble, the component adopts a role by creating
a new role instance and assigning it to itself. The kind of roles a component is
allowed to adopt is determined by role types which specify a set of role specific at-
tribute types and a set of message types supported by the role for collaboration.
To define the structural characteristics of collaborations, we use ensemble struc-
tures. They define which role types (constrained by multiplicities) are needed in
a collaboration and determine which role types may interact by which message
types. The idea is that collaboration is performed by communication between
role instances; component instances do not directly interact, but they can be
accessed by their owning role instances. In Helena, an ensemble specification
EnsSpec = (Σ,RoleBeh , init) consists of an ensemble structure Σ, a set RoleBeh
of role behavior specifications, and a predicate init describing the admissible ini-
tial states of an ensemble. We provide a role behavior specification RoleBehrt for
each role type rt occurring in Σ. It specifies the life cycle of each role instance of
the type rt . Role behaviors are represented by a simple process algebra with con-
structs for the null process, action prefix, nondeterministic choice, and recursion.
There are actions for creating and retrieving role instances, sending or receiv-
ing messages, and performing internal computations (for instance, accessing the
owning component).
?? This work has been partially sponsored by the EU project ASCENS, 257414.

46

A first idea towards a formal semantics of ensemble specifications has been
formulated in [2] using ensemble automata as semantic objects. An ensemble
automaton formalizes the evolution of an ensemble in terms of a labeled transi-
tion system. An ensemble state records (1) the currently existing role instances,
(2) which component instance currently adopts which role instance(s), (3) the
data currently stored by the existing instances, and (4) the current control state
of each role instance showing its local progress of execution. The transitions of
an ensemble automaton are labeled either by communication labels or by man-
agement labels. Communication labels express collaboration of role instances by
message exchange, management labels express creation of new role instances or
retrieval of existing ones when needed for a collaboration.

In this work we propose, for each ensemble structure Σ, a satisfaction re-
lation between ensemble specifications and ensemble automata formed over Σ.
The satisfaction relation relies (1) on the satisfaction of the init predicate by the
initial state of the automaton and (2) on a family of relations, one for each even-
tually existing role instance ri of type rt , between the control states of ri and the
states obtained from the operational semantics of the process expression given
by the behavior specification RoleBehrt . From the relations we can derive that
any action performed by an ensemble automaton must be allowed by the local
steps of the behavior specifications given for each role type. Then we define the
model class semantics of an ensemble specification EnsSpec = (Σ,RoleBeh , init)
leading to a loose semantics of ensemble specifications. In a next, step we show
how a canonical model can be constructed from the ensemble specification using
a set of rules which derive a maximal set of admissible execution steps of the
ensemble from the local role behavior specifications. We show that this canonical
model is initial in the class of all models of the specification. Initiality is based
on an appropriate homomorphism notion between ensemble automata. It relies
on a kind of simulation relation between the states of the two automata taking
into account (1) an injective mapping between the sets of eventually existing
instances of each automaton and (2) a family of relations between their con-
trol states. Our semantics relies on a synchronous communication scheme, but
it should be straightforward to generalize it to asynchronous communication.

References

1. The ASCENS Project (2014), http://www.ascens-ist.eu
2. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling - The Helena Ap-

proach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Soft-
ware. Lecture Notes in Computer Science, vol. 8373, pp. 359–381. Springer (2014)

3. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Au-
tonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., Bonsangue,
M., de Boer, F. (eds.) 10th International Symposium on Formal Methods for Com-
ponents and Objects. Lecture Notes in Computer Science, vol. 7542. Springer (2012)

2

47

An Institutional Framework for Heterogeneous Formal
Development in UML

Alexander Knapp1, Till Mossakowski2, and Markus Roggenbach3

1 Universität Augsburg
2 Otto-von-Guericke-Universität Magdeburg

3 Swansea University

In industrial software design, the Unified Modeling Language (UML) is the predom-
inately used development mechanism. In aerospace industry, e.g., the company AEC
uses the UML to define the software architecture of aeroplane engine controllers through
various levels of abstraction from a layered architecture overview to a detailed class, op-
eration and attribute definition of the software components. This model is then used for
code generation.

The UML is an OMG standard [8], which describes a language family of 14 types
of diagrams, of structural and behavioural nature. A typical development by AEC easily
involves eight different UML diagrams. The OMG specification provides an informal
semantics of nine sub-languages in isolation. The languages are mostly linked through
a common meta-model, i.e., through abstract syntax only. This situation leads to a gap
between standards’ recommendation to apply formal methods, and current industrial
practice, which by using the UML lacks the semantic foundations to apply such meth-
ods. One common approach to deal with this gap is to define a comprehensive semantics
for the UML using a system model, e.g., [1,2]. However, this is a thorny business, as
every detail has to be encoded into one, necessarily quite complex semantics. Further-
more, such an approach has difficulties to cater for UML’s variations of usage, leading to
company or domain-specific variations. In our work, we outline a competing approach
by providing a heterogeneous semantics based on institutions [5], where we extend [4]
by considering a subset of diagrams rich enough for industrial use.

The languages and UML diagram types that we consider are shown in Fig. 1. On the
modelling level we use parts of the UML and the Object Constraint Language (OCL).
On the implementation level we currently employ the programming language C and
ACSL. For substantial fragments of several UML diagram types, we have already pro-
vided a formalisation as institutions:

Class diagrams in [4], we have sketched an institution for class diagrams, which has
been detailed in [6]. It includes a construction for stereotypes.

Component diagrams form an institution similar to that for class diagrams. The main
difference are the connector types, which however are quite similar to associations.

Object diagrams are essentially reifications of models of class diagrams.
Composite structure diagrams are similar to object diagrams. The main difference

are the connectors, which however are quite similar to the links of object diagrams.
Interactions in [4], we have sketched an institution for interactions, as well as their

interconnection (also with class diagrams) via institution comorphisms.

48

2 Alexander Knapp, Till Mossakowski, and Markus Roggenbach

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

ACSL C

Properties Types Instances

OCL+Int

Automata, LTL SMT

Fig. 1. Institution morphisms (dashed arrows) and institution co-morphisms (solid arrows) be-
tween the languages and diagrams

OCL in [4], we have sketched institutions for OCL. In [3], the OCL semantics is pre-
sented in more detail. An institution based on this is in preparation.

Thus, the central remaining challenge for institutionalisting UML are state machines
and protocol state machines, C and ACSL as institutions.

We distinguish between diagrams for properties, types and instances, where we ex-
press the meaning of a model in a sub-language/diagram directly in an appropriate
semantic domain, especially by providing an institution for state machines. We further
systematically identify meaningful connections given by the abstract syntax of the UML
specification or which can be gleaned from its semantic description. The separation be-
tween the meaning of the individual diagrams and their relation allows our approach
to be adopted by different methodologies, for instance an object-oriented approach or a
component-based one.

References

1. M. Broy, M. V. Cengarle, H. Grönniger, and B. Rumpe. Considerations and Rationale for a
UML System Model. In Lano [7], chapter 3, page 43–60.

2. M. Broy, M. V. Cengarle, H. Grönniger, and B. Rumpe. Definition of the System Model. In
Lano [7], chapter 4, page 61–93.

3. M. V. Cengarle and A. Knapp. OCL 1.4/5 vs. 2.0 Expressions — Formal Semantics and
Expressiveness. Softw. Syst. Model., 3(1):9–30, 2004.

4. M. V. Cengarle, A. Knapp, A. Tarlecki, and M. Wirsing. A Heterogeneous Approach to UML
Semantics. In Concurrency, Graphs and Models, LNCS 5065. Springer, 2008.

5. J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specification and
Programming. J. ACM, 39:95–146, 1992.

6. P. James, A. Knapp, T. Mossakowski, and M. Roggenbach. Designing Domain Specific Lan-
guages — A Craftsman’s Approach for the Railway Domain Using CASL. In WADT’12,
LNCS 7841. Springer, 2013.

7. K. Lano, editor. UML 2 — Semantics and Applications. Wiley, 2009.
8. Object Management Group. Unified Modeling Language. Standard, OMG, 2011.

49

What is a derived signature morphism?

Ulf Krumnack1, Till Mossakowski2, and Tom Maibaum3

1 University of Osnabrück, Germany
2 Otto-von-Guericke University of Magdeburg, Germany

3 McMaster University, Hamliton, Canada

The notion of signature morphism is basic to the theory of institutions. It
provides a powerful primitive for the study of specifications, their modularity and
their relations in an abstract setting. The notion of derived signature morphism
generalises signature morphisms to more complex constructions, where symbols
may be mapped not only to symbols, but to arbitrary terms. Derived signature
morphisms have been introduced in [6] and studied in [9, 7, 10, 1, 2]. Recently, the
notion of derived signature morphism has gained attention in the field of model-
driven engineering [3], where it is closely related to the notion of query. Queries
also play a role in logic programming [8], databases and ontological engineering
[4]. Furthermore, derived signature morphisms may enhance approaches that
currently only consider plain signture morphisms or some form of substitution,
e.g. in analogy making [11] and conceptual blending [5].

The purpose of this work is to study derived signature morphisms in an
institution-independent way. The motivation is to give an institution indepen-
dent semantics to the notion of derived signature morphism, query and substi-
tution in the context of the Distributed Ontology, Modeling and Specification
Language DOL, which currently being standardised as an OMG standard, as
which will serve a meta-language for expressing logical theories and their rela-
tions in the application areas mentioned above.

We will recall two known approaches to derived signature morphisms, intro-
duce a third one, and discuss their pros and cons:

1. The first approach is to consider derived signature morphisms to be ordinary
signature morphisms into a conservative or definitional extension [].

2. The second approach is to consider derived signature morphisms to be ab-
stract morphisms that induce abstract substitutions in the sense of [1, 2]. The
crucial property is to introduce sentence translations and model reducts.

3. The third approach is to consider Kleisli institutions, which have derived
signature morphisms as signature morphisms. A Kleisli institution is defined
for an institutional monad, which is a monad in the 2-category of institutions,
institutions morphisms and discrete institution morphism modifications. The
Kleisli institution then is the Kleisli object (in the sense of 2-category theory)
of the institutional monad.

The first approach is very general and works in any (weakly) semi-exact insti-
tution. While models can be reduced against derived signature morphisms, the
drawback is that sentences cannot be translated along them. dblp johnson The
second approach remedies this problem axiomatically: model reducts and sen-
tence translation are required to exist. Moreover, powerful Herbrand theorems
relate queries and substitutions [1, 2].

50

The third approach is more specific about the nature of derived signature
morphisms: they are obtained through a Kleisli construction in a monad, which
provides a more precise (abstract) description of what derived signature mor-
phisms are. In particular, it allows to study important question, e.g. which col-
imits exist in these various categories of derived signature morphisms.

On a more general level, this approach shows again, that notions from basic
category theory (monads and kleisli construction) can be adopted to institutions
and lead to useful concepts there. It naturally leads to the question, if related
notions, like the Eilenberg-Moore construction, can give raise to meaningful ap-
plications in an institutional setting as well.

References

1. R. Diaconescu. Herbrand theorems in arbitrary institutions. Information Process-
ing Letters, 90:29–37, 2004.

2. R. Diaconescu. Institution-Independent Model Theory. Birkhäuser, 2008.
3. Zinovy Diskin, Tom Maibaum, and Krzysztof Czarnecki. Intermodeling, queries,

and Kleisli categories. In Juan de Lara and Andrea Zisman, editors, FASE’12
Proceedings of the 15th international conference on Fundamental Approaches to
Software Engineering, volume 7212 of Lecture Notes in Computer Science, pages
163–177. Springer, 2012.

4. Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query
answering for the description logic shiq. J. Artif. Intell. Res. (JAIR), 31:157–204,
2008.

5. Joseph Goguen and D. Fox Harrell. Style: A computational and conceptual
blending-based approach. In Shlomo Argamon, Kevin Burns, and Shlomo Dubnov,
editors, The Structure of Style: Algorithmic Approaches to Understanding Manner
and Meaning, pages 291–316. Springer, Berlin, 2010.

6. Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An initial algebra
approach to the specification, correctness and implementation of abstract data
types. In Raymond T. Yeh, editor, Current Trends in Programming Methodology
– Vol. IV: Data Structuring, pages 80–149. Prentice-Hall, 1978.

7. Furio Honsell, John Longley, Donald Sannella, , and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. In Proceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS 2000), volume
1784 of Lecture Notes in Computer Science, pages 161–176, Berlin, 2000. Springer.

8. J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.
9. Donald Sannella and Rod M. Burstall. Structured theories in lcf. In Giorgio

Ausiello and Marco Protasi, editors, Proceedings of the 8th Colloquium on Trees
in Algebra and Programming (CAAP ’83), pages 377–391. Springer, 1983.

10. Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification
and Formal Software Development. Monographs in Theoretical Computer Science.
Springer, Berlin, 2012.

11. Martin Schmidt, Ulf Krumnack, Helmar Gust, and Kai-Uwe Kühnberger.
Heuristic-driven theory projection: An overview. In Henri Prade and Gilles
Richard, editors, Computational Approaches to Analogical Reasoning: Current
Trends, volume 548 of Studies in Computational Intelligence, pages 163–194.
Springer, 2014.

251

Safety and Performance of the European Rail
Traffic Management System: A Modelling and

Verification Exercise in Real Time Maude

Andrew Lawrence, Ulrich Berger,
Markus Roggenbach, and Monika Seisenberger

Swansea University, UK
ajlawrence@acm.org

{u.berger,m.roggenbach,m.seisenberger}@swansea.ac.uk

ERTMS. The European Rail Traffic Management System is a next generation
train control system loosely specified in [3]. Traditionally the railway has been
a Boolean world of discrete signals, track circuits for train detection and inter-
lockings which use propositional equations to guarantee train safety. In contrast,
the ERTMS deals with continuous data that allows for a finer grain of control
over the railway. Here, a radio block centre (RBC) grants each train a block of
track called a movement authority in which the train is allowed to move. ERTMS
requires trains to have on-board equipment that ensures trains to break in time.
While the correctness of traditional interlocking systems is relatively well under-
stood [1], it is ongoing research of how to verify ERTMS for safety properties
such as collision freedom due to the involvement of continuous data. Further, it
is an open field of how to substantiate the claim that the ERTMS approach of-
fers a higher performance of the railway compared to traditional railway control.

Methodology. Real Time Maude is an extension of Full Maude which supports
the specification to real-time and hybrid systems. Offered techniques include
simulation and time-bounded LTL model checking for verification of timed prop-
erties. We use the Real Time Maude system [2] for the specification of ERTMS
and the Maude linear temporal logic (LTL) model checker [4] for verification. In
our model, speed, acceleration, braking behaviour and track length are integral
parts. This allows us to specify and prove the safety of the system and to study
the system performance via execution of the specification as a simulation.

Case Studies. We first formalise a simple example railway in the shape of a
pentagon (see Fig. 1 (a)) with two trains, one slower than the other, an inter-
locking, an RBC and five track segments {l0, . . . , l4} as four hybrid automata
to capture the behaviour of the system. This example demonstrates how the
ERTMS system deals with a length of track containing multiple trains which are
controlled by an RBC and interlocking. Then we proceed to model this small
example in the Real Time Maude system as an object orientated specification
capturing the message passing and communications between the different com-
ponents of the system. This specification is executed to simulate the behaviour
of the modelled railway. The faster train can be seen catching up with the slow
train and then braking and waiting for authorisation before moving off again.

52

2 Lawrence et.al.: Safety and Performance of the ERTMS

D = 0
l0

50

l1

100 l2 150

l3

200
l4

(a) Pentagon Example

l0 l1 l2 l3 l4

l5

l6

Route 1

Route 2

(b) Junction Example

Fig. 1: Case Studies

We verify that the movement authorities of the two trains do not overlap which
is expressed by safety properties of the form “it is globally true that if both
trains are behind their movement authorities then either train A’s movement
authority is behind train B’s or visa versa”.

As a second case study we model an open system, a simple junction (see
Fig. 1 (b)) which contains a single point and two routes each consisting of five
track segments. Trains are inserted onto the railway line according to a schedule
by a controller object with a given route which they must follow. This example
demonstrates the behaviour of ERTMS with respect to two further important
constructs in the railway domain namely routes and points. It enables us to anal-
yse the throughput of the ERTMS system through a junction where one train
must wait for the point to become available. The Maude LTL model checker is
then applied to verify that a point does not move in a given movement authority,
a safety property that is essential for the prevention of derailment.

Results & Future Work. Though the presented case studies are of simple na-
ture, they demonstrate that our modelling approach works: safety properties can
be formulated and verified in reasonable time via model-checking, performance
can be studied via simulation. It is future work to study realistic examples, pos-
sibly to develop abstractions, and also to establish performance properties as
theorems.

References

1. Chadwick, J. , James, P. Kanso, K., Lawrence, A. Moller, F., Roggenbach, M.,
Seisenberger, M. and Setzer, A.: Verification of solid state interlocking programs. In
SEFM’13, LNCS 8368, Springer 2014.

2. Ölveczky, P. C. and Meseguer, J.: Specification and Analysis of Real-Time Systems
Using Real-Time Maude. In FASE’04. LNCS 2984, Springer 2004.

3. International Union of Railways: ETCS System Requirements Specification (SRS)
ver. 2.3.0 (2006)

4. Eker, S., Meseguer, J., and Sridharanarayanan A.: The Maude LTL Model Checker
and Its Implementation. In SPIN’03, LNCS 2648, Springer 2003.

53

A canonical proof-theoretic approach to model
theory

Carlos G. Lopez Pombo1,2, Paula D. Chocrón1,2, Ignacio Vissani1,2, and
Tomas S.E. Maibaum3

1 Department of Computing, FCEyN, Universidad de Buenos Aires
2 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET)

3 Department of Computing and Software, McMaster University

Logic has proved essential as a formal language for describing different aspects
of software artefacts. These formal descriptions, frequently called specifications,
have served not only as requirements documentation but also for proving prop-
erties, provided the logical language in which the specification is written has an
appropriate reasoning tool. Semantics is an integral part of logic, as providing
logical descriptions of real-world phenomena requires people to agree on how
these descriptions should be interpreted. In this sense, model theory has been
seen as providing the cornerstone for the satisfaction of this need. Model theory is
usually understood as the study of classes of mathematical structures satisfying
formulae in a formal language of choice. Model theory is a tool for characterising
semantic notions, like meaning and truth, associated to syntactic objects, like
formulae and proofs, of a corresponding language. From a category theory point
of view the model theory of a logic has been formalised as an institution [1]. An
institution is a structure 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 formed by: 1) a cate-
gory of signatures Sign, 2) a grammar functor Sen : Sign→ Set providing a set of
sentences for each signature, 3) a model functor Mod : Signop → Cat providing
a class of semantic structures for each signature, 4) a family of binary rela-
tions {|=Σ}Σ∈|Sign| such that given Σ ∈ |Sign|, |=Σ⊆ |Mod(Σ)|× |Sen(Σ)|, and
5) satisfying that for all σ : Σ → Σ′ ∈ ||Sign||, α ∈ Sen(Σ) andM∈Mod(Σ′),
M |=Σ′ Sen(σ)(α) if and only if Mod(σ)(M) |=Σ α.

In mathematical logic, given a logical system, we are forced to consider all
possible semantic structures that can interpret its sentences, while in computer
science we are mostly concerned about the analysability of the semantics as we
rely on it to prove properties of software artefacts (as well as meta properties
of the logic itself). Usually, we place trust only in those structures that can
be described resorting to a formal logical language; typically they are maximal
consistent theories in the language of choice, like those used in Henkin’s com-
pleteness proof for equational logic [2], or theories over some formalisation of
set theory. Our aim is to undertake a recasting of the notion of semantics in
syntactic terms to support this approach.

Behavioural specifications, such as those written in any dynamic logic [3],
temporal logics, both linear time [4], and branching time [5,6], etc., usually in-
volve the following common elements: 1) an interpretation of a subset of symbols
whose interpretation is fixed for all states usually referred to as rigid, 2) an or-
dering of states (for example, sequences of states in linear temporal logics, trees

54

of states in branching time temporal logics, a single state in dynamic logics, etc.)
such that each of the constituent states provide an interpretation of a different
subset of symbols, referred to as flexible symbols, and 3) a satisfaction relation
providing meaning for behavioural logic operators. Generally, the ordering of
states is obtained from a binary relation between them; for example, in dynamic
logics there is a set of atomic actions and regular programs defined over them; in
temporal logics, both linear time and branching time, there is a single transition
relation; in deontic logics there are events produced by actions, etc.

This paper addresses the question of whether such a class of structures can
be constructed in a canonical way so the definition of the functor Mod, in the
definition of institutions, can be given in concrete representable terms.

Equational logic extended with extra-logical predicate symbols has been
widely accepted as an appropriate specification language for describing the oper-
ations of abstract data types [7]. Equational theories can also be used to provide
interpretations, of extra-logical symbols by considering formulae of the form
f(t1, . . . , tn) = t and P (t1, . . . , tn) where t1, . . . , tn and t are ground terms of the
logical language of choice. On the other hand, we extend the Elementary The-
ory of Binary Relations [8] by incorporating the additional relational operators
of ω-closure fork algebras [9]. This class of relation algebras have been used to
reason about relations due to their complete (almost) equational calculus and
its easy-to-understand concrete semantics, build out of a set of binary relations.

In this work we propose a general framework that facilitates the definition of
the semantics of a logical system by identifying and properly characterising its
static and dynamic properties. To make the approach flexible, we propose the
use of a higher-order extension of equational logic to formalise the static aspects,
while the dynamic properties characterising the accessibility relations between
states are expressed by means of concrete models for fork algebraic terms.

References

1. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. Journal of the ACM 39(1) (1992) 95–146

2. Henkin, L.A.: The logic of equality. The American Mathematical Monthly 84(8)
(1977) 597–612

3. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. Foundations of Computing. MIT
Press.

4. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer-Verlag.
5. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-

poral logic of branching time. Jour. of Comp. and Syst. Sciences 30(1) (1985) 1–24
6. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th. Annual IEEE

Symposium on Foundations of Computer Science, Los Alamitos, CA, USA, IEEE
Computer Society, IEEE Computer Society (1977) 46–57

7. Ehrig, H., Mahr, B., Orejas, F.: Introduction to algebraic specification: Formal
methods for software development. Computer Journal 35(5) (1992) 468–477

8. Tarski, A.: On the calculus of relations. Jour. of Symb. Logic 6(3) (1941) 73–89
9. Frias, M.F.: Fork algebras in algebra, logic and computer science. Volume 2 of

Advances in logic. World Scientific Publishing Co., Singapore (2002)

55

Quasiary Specification Algebras and Logics

Mykola Nikitchenko

Taras Shevchenko National University of Kyiv, Ukraine
nikitchenko@unicyb.kiev.ua

Algebraic approach to system specification has the following two characteris-
tics: 1) the formalism of many-sorted algebras is used to model software systems;
2) special logics based on such many-sorted algebras are used to reason about
system properties. In the literature various kinds of such algebras and logics are
described (e.g. see [1]).

In this paper we present a special kind of algebras and logics defined for
classes of quasiary mappings. Informally speaking, such mappings are partial
mappings defined over partial states (partial assignments) of variables. Conven-
tional n-ary mappings can be considered as a special case of quasiary mappings.

We identify the following properties of quasiary mappings: partiality, sensi-
tivity to unassigned variables, and unrestricted (possibly infinite) arity.

These features, on the one hand, better reflect properties of software systems,
but on the other hand, they complicate construction and investigation of logics
of quasiary mappings comparing with classical logic oriented to n-ary mappings.
In this case some laws of classical logic are violated. In particular, partiality
of predicates violates Modus Ponens, sensitivity of predicates violates the law
∀xP → P . Thus, construction and investigation of algebras and logics of quasiary
mapping is an important challenge.

We start with the definition of quasiary many-sorted specification algebras.

The arrows
p−→ and

t−→ define respectively classes of partial and total map-

ping. Let T be a class of types and τ : V
t−→ T be a total mapping called

type valuation. Given V , T and τ , a class NST (V,T, τ) (shortly: NST (τ)) of

typed nominative sets is defined by the formula NST (τ) =
∏̃

v∈V τ(v), where∏̃
v∈V τ(v) is the partial Cartesian product. Informally speaking, typed nomi-

native sets represent partial states of typed variables. The class of many-sorted

partial quasiary predicates is denoted Pr(τ) = NST (τ)
p−→ Bool. Let A ∈ T.

The class of many-sorted partial quasiary ordinary functions into A is denoted

FnA(τ) = NST (τ)
p−→ A. The class of many-sorted partial bi-quasiary functions

(program functions) is denoted FPrg(τ) = NST (τ)
p−→ NST (τ).

We specify the following quasiary specification program algebra:

QSPA(τ) =< Pr(τ), {FnA(τ) | A ∈ T}, FPrg(τ);
∨,¬,′ x, Sx̄

P , S
x̄
A,∃x,=A, AS

x, id, •, IF,WH,FH, · >

with operations (compositions [2]) of disjunction ∨, negation ¬, parametric de-
nomination ′x, parametric superposition Sx̄

P of ordinary functions into a predi-
cate (x̄ = (x1, ..., xn) ∈ V ∗), parametric superposition Sx̄

A of ordinary functions
into an ordinary function with the range A, parametric existential quantifier

56

∃x, parametric equality =A, parametric assignment ASx, identity id, sequential
execution •; conditional IF , loop WH, and prediction · (sequential execution of
a program function and a predicate [3]). In the case of deterministic functions
the prediction composition is related to the weakest precondition defined by Di-
jkstra and possibility/necessity operations of dynamic logic. This composition
provides possibility to construct predicates describing program properties. Using
this composition we can define continuous Floyd-Hoare composition for partial
predicates [4] by the formula FH(p, pr, q) = p→ pr · q.

Restricting QSPA(τ) on the two first carriers (thus deleting program func-
tions) we obtain a quasiary predicate algebra QA(τ) which can be considered
generalization of first-order classical logic on quasiary predicates [5].

The class of quasiary specification algebras (for different τ) forms a seman-
tic basis for quasiary specification program logics. We introduce the notion of
logic signature Σ which includes the sets of variables V , predicate symbols Ps,
ordinary function symbols Fs, and program functions symbols FPs (with corre-
sponding type valuation mappings) and construct the logic language as the set
of terms over Σ. The formula interpretation mapping is defined in a usual way.

The following results have been obtained:

(1) many-sorted quasiary specification program and predicate algebras and log-
ics have been constructed and investigated;

(2) sound and complete sequent calculi have been constructed for many-sorted
quasiary predicate logics;

(3) algorithms for reduction of the satisfiability problem in predicate logics and
special subclasses of program logics to the satisfiability problem in classical
logic have been developed;

(4) a quasiary program logic which can be considered as an extension of Floyd-
Hoare logic on partial predicates has been defined and investigated; sound
and extensionally complete calculi have been constructed for such logics.

It is expected that the obtained results will be able to serve as a basis for
extending automated reasoning systems with more expressive logical languages.

References

1. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer (2012)

2. Nikitchenko, M., Tymofieiev, V.: Satisfiability in composition-nominative logics.
Central European Journal of Computer Science, vol. 2, issue 3, 194–213 (2012)

3. Glushkov, V.: Automata theory and formal transformations of microprograms.
Cybernetics, 5, 3–10 (1965) In Russian

4. Kryvolap, A., Nikitchenko, M., Schreiner, W.: Extending Floyd-Hoare logic for
partial pre- and postconditions. CCIS, 412, 355–378, Springer (2013)

5. Nikitchenko, M., Shkilnyak, S.: Mathematical logic and theory of algorithms. Publ.
house of Taras Shevchenko National Univ. of Kyiv, Kyiv (2008) In Ukrainian

57

Proving liveness properties using abstract state
machines and n-visibility

Norbert Preining, Kokichi Futatsugi, and Kazuhiro Ogata

Japan Advanced Institute of Science and Technology
Research Center for Software Verification

Nomi, Ishikawa, Japan
{preining,futatsugi,ogata}@jaist.ac.jp

Introduction One methodology for formal specification of a complex system is
using Abstract State Machine (Asm), where the system is described as a set
of states with transitions between states. Although a very simple paradigm, it
renders itself applicable in a wide variety of scenarios, from program analysis
over protocol specification to design planning.

In the setting of formal, more specifically algebraic specification and verifi-
cation, we aim at a set of conditions on the states, which we want to prove to
hold in all reachable states.

In the following we describe the general methodology in proving properties
using Asm. In particular, we extend one of the most common proof methods,
namely induction over the set of reachable states, to include additional properties
on transitions. This new proof method, we call it n-visibility (for n ∈ N∪ {∞}),
allows for the verification of liveness properties, which by itself are out of the
reach of the base proof method by induction on the set of reachable states.

We continue in defining an extended system that includes transitions, and
show that the base proof method in the extended system and the proof method
with n-visibility in the base system coincides. Using this method we can show
that extension with infinite visibility acts as fix-point of this extension procedure,
and can prove all properties that one can prove with ∞-visibility, including the
typical liveness properties, but also more exotic fairness properties.

Abstract state machine Asm is a well known concept, we only recall a few defini-
tions. Let us assume an algebra A of a many-sorted (order-sorted) signature Σ,
and indicate with State the sort as well as the set of all ground terms repre-
senting states. Transitions are pairs of states (ground state terms), the set of
all transitions is denoted by T . With system we denote the set of algebra, state
sort, initial states and transitions: Π = (A, State, I, T). The set of reachable
states R(Π) is defined as usual via transition chains. Transition chains are de-
fined as sequence of states that form a transition. We denote by T Cn(s) the set
of transition chains of length n that start from a given state s.

The general aim of specification and verification is to prove that a prop-
erty inv holds for the set of all reachable states. It is well known from the
literature that in most cases the set of reachable states is not easily describable,
or equivalently, it is not decidable whether a state is in R or not. If we still want
to prove a property inv(r) for all r ∈ R, we have to use an inductive approach.

58

Theorem 1 (base proof method). The property inv holds for all reachable
states r, i.e., ∀r ∈ R inv(r), if the following two conditions are satisfied: (1)
inv(s) holds for all s ∈ I, and (2) inv(s)→ inv(s′) holds for all (s, s′) ∈ T .

n-visibility We consider a proof method that allows not only look at a single
state, but also at transitions between reachable states, in particular, n transitions
starting from the current state into the future. Here we include the case of infinite
visibility, i.e., that n =∞. Assume that a predicate prop on transition sequences,
in particular T Cn, is given, the proof method with n-visibility for n ∈ N ∪ {∞}
is defined as follows:

Theorem 2 (proof method with n-visibility). Assume that inv is a prop-
erty on states, and prop is a property on T Cn. To show that ∀r ∈ R inv(r) and
∀r ∈ R ∀τ ∈ T Cn(r) prop(τ) holds, it suffices to show the following properties:
(1) inv(s) holds for all s ∈ I, (2) ∀s ∈ State ∀τ ∈ T Cn(s) inv(s) → prop(τ)
holds, and (3) ∀(s, s′) ∈ T inv(s)→ inv(s′).

The base proof method only discusses properties of states, and is thus of
restricted expressiveness. On the other hand, if we use the proof method with n-
visibility we can include more general properties into the discussion, in particular
liveness properties which often require a comparison of states.

Extension system The concept of visibility introduced above can be used to give
an algebraic description and methodology, by including transition sequences into
the description. Let Π = (A, State, I, T) be a state-based Asm. We defined the
n-visibility extension of Π, in symbols ξ(n)(Π) by adding a new sort State(n), a
new constructor u(n) of type u(n) : State × Staten → State(n). Ground terms of
the extended algebra are called meta-states.

It is possible to define transitions and initial states in the extended algebra
such that they are compatible with the transitions and initial states in the base
system with respect to transition sequences.

Based on this we can prove the following theorems:

Theorem 3. Provability in Π with n-visibility coincides with (base) provability
in Π(n) (i.e., without visibility).

The above clearly shows that by considering extended systems we gain expres-
sivity, as we are enabled to speak and prove properties about sets of transitions.
We conclude with two results on iterated extension and its fixpoint:

Theorem 4. Iterated extension with n-visibility adds up:

ξ(n)(ξ(m)(Π)) = ξ(n+m)(Π)

and the extension of Π with ∞-visibility provides the strongest expressivity.

We will also provide implementation of these concepts in CafeOBJ, proving
liveness properties for Qlock, and are planning to give a general mechanism for
extending state space based specifications within CafeOBJ.

59

Improving the Quality of Use Cases via Model
Construction and Analysis?

Leila Ribeiro, Érika Cota, Lucio Mauro Duarte, and Marcos A. de Oliveira

PPGC - Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS)
PO Box 15.064 – 91.501-970 – Porto Alegre – RS – Brazil
{leila,erika,lmduarte,marcos.oliveira}@inf.ufrgs.br

Abstract. Use Cases (UC) are a popular model to specify system be-
haviour and is an important artifact for system design and evolution. UC
quality impacts the overall system quality and defect rates. UCs are how-
ever detailed in natural language, leaving space to various issues related
to imprecision, ambiguity and incompleteness. Keep the expressiveness
of an informal description and choose a formalism that is flexible enough
to represent the semantics defined by the stakeholders and allow system-
atic analysis is thus a challenge. We propose a methodology to enhance
the quality of the UC by applying tool-supported analyses to a formal
model derived from UC description. We adopt a Graph Transformation
model (GT) and describe a method for modeling, analysis and improve-
ment of the UC description using tools and techniques available for this
formal specification model. Analysis can reveal ambiguities, inconsisten-
cies, and missing requirements. The result is not only an improved UC
but also the creation of a high-quality documentation of the system: a
formal model of the UC (given by a graph transformation system). We
propose a translation from UCs to GTs that requires only basic knowl-
edge of graphs and UCs and is systematic, describing what the developer
should do at each step. It is faster and cheaper than a formal inspection,
avoiding several rounds of discussion, and more efficient than an infor-
mal inspection because the analyses are executed following a well-defined
process, based on a formal model and aided by the AGG tool, which au-
tomatically produces the artifacts presented in the paper. Our goal is
to detect problems and provide an initial diagnostic feedback. This is
done via analysis of a series of Open Issues (OIs). We describe possible
outcomes of each step, how to interpret OIs and their level of severity,
considering real and potential errors. We believe that even more impor-
tant than pointing out a problem is presenting some insight on what its
cause could be and how harmful it could be if not fixed.

Keywords. Use Cases, Graph Transformation, Model Analysis.

A preliminary version of the paper can be found in
https://dl.dropboxusercontent.com/u/23087660/WADT2014-RibeiroCotaDuarteOliveira.pdf

? This work is part of the VeriTeS project, supported by FAPERGS and CNpq

60

A Refinement Procedure for Inferring
Side-Effect Constructs

Adrián Riesco1, Irina Măriuca Asăvoae2, Mihail Asăvoae2

1 Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es

2 VERIMAG/Universitè Joseph Fourier, France
{irina.asavoae, mihail.asavoae}@imag.fr

1 Introduction

In this paper we propose a refinement procedure of a previously introduced tech-
nique, in [5], which infers language constructs producing side-effects (i.e. instruc-
tions in some programming language which, upon execution, will induce memory
updates). Our target application is to design generic program analysis tools (e.g.
a program slicer) based on a meta-level analysis of the programming language
semantic definition. This would allow a certain degree of parametrization of the
program analysis, in general, and of the program slicing in particular. As such,
subsequent modifications of the formal semantics of the language would not re-
sult in changes of the analyzer since the analyzer automatically incorporates the
modifications. Our approach builds on the formal executable semantics of the
language of interest, given as a rewriting logic theory [4, 2] and on the program
to be analyzed.

Our program slicing methodology combines two steps: (1) a generic analysis
of the formal executable semantics followed by (2) a data dependency analysis
of the program. Step (1) is a fixpoint computation of the set of the smallest
language constructs that have side-effects which, in turn step (2) is used to ex-
tract safe program slices based on a set of variables of interest. We instantiated
this formal semantics-based methodology to intra- [5] and inter-procedural [1]
program slicing. The intraprocedural slicing is based on the classical WHILE
language augmented with a side-effect assignment and read/write statements,
specified in Maude [2], while the interprocedural variant uses the WhileF lan-
guage, an extension which includes scope declaration for variables and language
statements for function call and return. However, both program slicing methods
are based on a less generic assumption: the general memory update operation—
the assignment statement—, has a fixed destination: its left-hand side. This is
not necessarily generic as, for example, the family of the assembly languages use
explicit memory operations (load/store) and arithmetic/logic operations (which
update registers), with flexible destination placement in the language syntax.
For example:

- in gas - the GNU assembler (and the default back-end of the standard gcc

compiler), an instruction like movl $0, %eax copies the value 0 into the
register %eax. The update is from left (source) to right (destination).

61

2 Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

- in x86 assembly language, an instruction like mov ax, 0h copies the value 0

into the register ax. The update is from right (source) to left (destination).

In this paper, we propose a refinement of our formal-semantics based program
slicing which infers automatically the direction of the memory/storage update.

To make this inference, we make the standard assumption that equations are
oriented from left to right, hence considering them as rewrite rules. Then the
algorithm computes the set of basic language constructs which produce side-
effects, by inspecting the conditions and the right-hand side of each rewrite rule
in the definition. For this inspection, we employ unification and an adaptation
of the backward chaining technique [6]. The results are used as contexts in step
(2) to infer a safe program slicing as described in the followings. We start with
the program, P and a set of variables of interest V . First we identify and label
the contexts containing variables of interest and increment the set V with the
other variables appearing in the currently identified context. We run this step
until V stabilizes. At the end, the sliced program is represented by the skeleton
term containing all the labeled contexts.

Our two steps slicing algorithm resembles the approach in [3], where an algo-
rithm mechanically extracts slices from an intermediate representation of the lan-
guage semantics definition. The algorithm relies on a well-defined transformation
between a programming language semantics and this common representation. It
also generalizes the notions of static and dynamic slices to that of constrained
slices. What we propose is to eliminate the translation step to the intermediate
representation and to work directly on the language semantics. Moreover, when
we infer the direction of the memory update operation, we address, in an uniform
way, a wide range of low-level languages.

References

1. Asavoae, I.M., Asavoae, M., Riesco, A.: Towards a formal semantics-based technique
for interprocedural slicing. In: Integrated Formal Methods iFM (2014), to appear.

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, LNCS, vol. 4350. Springer
(2007)

3. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: POPL. pp.
379–392 (1995)

4. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002)

5. Riesco, A., Asavoae, I.M., Asavoae, M.: A generic program slicing technique based on
language definitions. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. Lecture
Notes in Computer Science, vol. 7841, pp. 248–264 (2013)

6. Sterling, L., Shapiro, E.Y.: The Art of Prolog - Advanced Programming Techniques.
MIT Press (1986)

62

Solving Queries over Modular Logic Programs

Ionuţ Ţuţu1,2 and José Luiz Fiadeiro1

1 Department of Computer Science, Royal Holloway University of London
2 Institute of Mathematics of the Romanian Academy,

Research group of the project ID-3-0439
ittutu@gmail.com, jose.fiadeiro@rhul.ac.uk

As in many other areas of computing science, in logic programming modu-
larization or structuring techniques are an essential element in managing the
inherent complexity of large software systems – in this case, logic programs – at
various stages of their development. The literature on modularization in logic
programming is vast, and it has evolved primarily along two somewhat divergent
lines of research. Whereas a number of proposals have focused on augmenting
logic-programming languages with module systems through dedicated constructs
for building programs as hierarchical combinations of components, preserving
in this way the denotational and the operational semantics of the underlying
formalisms (see, e.g. [1,2,3]), others have explored the possibility of extending the
base logic-programming language with new logical connectives so as to capture
the operators needed for building and composing modules (see, e.g. [4,5]). A
comprehensive survey of these general approaches is presented in [6].

Through our work we aim to bring the two aforementioned lines of research
into harmony by studying modularization over a new model-theoretic framework
for logic programming advanced in [7] that combines ideas specific to each of
the directions. On the one hand, by extending Goguen and Burstall’s concept of
institution [8] with appropriate notions of variable, substitution, clause, query
and goal-directed rule, the theory we propose accommodates logical systems
whose expressive power goes beyond that of the original formalism of Horn-clause
logic. On the other hand, inspired by recent developments in the theory of
structured specifications [9], it defines logic programs in an axiomatic manner,
as abstract structures characterized by signatures, sets of clauses and classes of
models, capturing in this way not only representations of programs as plain sets
of clauses [10], but also elaborate module systems like those described in [11,12].

Within this algebraic setting, we investigate two of the most fundamental
aspects of the modularization of logic programs: the preservation and the reflection
of solutions along morphisms of programs and, why not, along encodings of one
logic-programming language, together with its associated module system, into
another. From a computational point of view, these properties have a significant
impact on the efficiency of searching for solutions to queries. In particular, the
former gives us the possibility to search for solutions to queries in restricted
contexts that correspond to subprograms or imported modules, and then translate
these solutions back to the original setting, while the latter guarantees that all
solutions can be obtained in this manner. It should be noted, however, that
only the preservation property can be expected to hold for any morphism of
logic programs, or any encoding of logic-programming languages. The reflection

63

property may hold for many morphisms or encodings of practical importance,
but not for all; it is unlikely to hold, for instance, for those morphisms of logic
programs that model simple implementations or refinements [13].

The contribution of the approach presented here is twofold. First, it provides
a general framework for studying the modularization of logic programs inde-
pendently of both their underlying logical systems and the chosen structuring
mechanisms. In this sense, our work upgrades a number of institution-independent
results reported in [14] by dropping or weakening requirements such as the liberal-
ity of signature morphisms and the existence of representable substitutions, as well
as by axiomatizing the notion of logic program. Second, it distinguishes between
correct and computed answers, i.e. between the denotational and the operational
notions of solution to a query, enabling the computation of all solutions to certain
queries even in situations in which the logic program under consideration is not
query-complete, meaning that not every answer can be proved to be a solution
using the program’s goal-directed rules. This supports the development of more
advanced notions such as parameterization and higher-order modules.

References

1. O’Keefe, R.A.: Towards an algebra for constructing logic programs. In: 1985
Symposium on Logic Programming, IEEE Computer Society (1985) 152–160

2. Goguen, J.A., Meseguer, J.: Eqlog: Equality, types, and generic modules for
logic programming. In: Logic Programming: Functions, Relations, and Equations.
Prentice Hall (1986) 295–363

3. Sannella, D., Wallen, L.A.: A calculus for the construction of modular Prolog
programs. Journal of Logic Programming 12(1&2) (1992) 147–177

4. Miller, D.: A logical analysis of modules in logic programming. Journal of Logic
Programming 6(1&2) (1989) 79–108

5. Giordano, L., Martelli, A., Rossi, G.: Extending Horn clause logic with implication
goals. Theoretical Computer Science 95(1) (1992) 43–74

6. Bugliesi, M., Lamma, E., Mello, P.: Modularity in logic programming. Journal of
Logic Programming 19/20 (1994) 443–502

7. Ţuţu, I., Fiadeiro, J.L.: From conventional to institution-independent logic pro-
gramming. (2013) submitted.

8. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. Journal of the ACM 39(1) (1992) 95–146

9. Diaconescu, R.: An axiomatic approach to structuring specifications. Theoretical
Computer Science 433 (2012) 20–42

10. Lloyd, J.W.: Foundations of logic programming. Symbolic computation: Artificial
intelligence. Springer (1987)

11. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information
and Computation 76(2/3) (1988) 165–210

12. Borzyszkowski, T.: Logical systems for structured specifications. Theoretical
Computer Science 286(2) (2002) 197–245

13. Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic
specifications: implementations revisited. Acta Informatica 25(3) (1988) 233–281

14. Diaconescu, R.: Herbrand theorems in arbitrary institutions. Information Processing
Letters 90(1) (2004) 29–37

64

A Full Operational Semantics of
Asynchronous Relational Networks?

Ignacio Vissani1,2, Carlos G. Lopez Pombo1,2,
Ionuţ Ţuţu3,4, and José Luiz Fiadeiro3

1 Department of Computing, FCEyN, Universidad de Buenos Aires, Argentina
2 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas, Argentina

3 Department of Computer Science, Royal Holloway University of London, UK
4 Institute of Mathematics of the Romanian Academy,

Research group of the project ID-3-0439
ivissani@dc.uba.ar, clpombo@dc.uba.ar,

ittutu@gmail.com, jose.fiadeiro@rhul.ac.uk

In the context of Service-Oriented Computing (SOC), the structure of software
systems is intrinsically dynamic since the software applications that currently run
over globally available computational and network infrastructures may require
external services, and thus they may need to procure, on the fly, other applications
that provide those services, and bind to them so that, collectively, given business
goals can be fulfilled. In particular, development is no longer a process in which
subsystems are developed and integrated by skilled engineers: in SOC, discovery
and binding are performed, at run-time, by dedicated middleware.

In this talk, we provide an extension of the trace semantics of the service
component algebra presented in [1] – Asynchronous Relational Networks (ARNs)
– to account for the fact that, because of run-time discovery and binding, ARNs
can be reconfigured at the same time as they compute. Our work follows the
formalisation developed [2] in terms of hypergraphs whose nodes, or points,
correspond to structured sets of messages that can be exchanged between the
network components, and whose hyperedges capture those elements of networks
that account for computation and/or communication, i.e. the processes and the
channels attached to them through connections.

Every ARN determines sets of interaction-points whose associated messages
can be regarded as information that is provided or required by the network. This
supports a notion of execution of an ARN through which a network can discover
and bind, at run time, to service modules of a given repository whenever it
triggers an action related to the publication or the delivery of a requires-message.

Within this context, we define a new operational semantics for ARNs that
relies on specialised forms of temporal-logic concepts such as execution fragment,
path and trace. More precisely, we formalise the execution of an ARN as a
sequence of networks and local states of their components; such an execution
starts with the ARN under consideration and the initial states of its processes

? This work has been supported by the European Union Seventh Framework Programme
under grant agreement no. 295261 (MEALS)

65

and channels, and unfolds through the effect of publication/delivery actions,
which may trigger the discovery and binding of other networks.

This means that executions of an ARN can be regarded as sequences of
generalised states connected by a transition relation, where a transition from one
state to another can be the result of either the execution of an internal transition
of the ARN, i.e. the effect of an action that is not associated with any of the
ARN’s provides- or requires-points, or the binding of one of the requires-points
of the ARN to a provides-point of a service module taken from the repository as
a consequence of executing an action associated with that requires-point.

The approach we propose here combines, in an integrated way, the operational
semantics of processes and channels, and the dynamic reconfiguration of ARNs.
It captures a full operational semantics of ARNs through labelled transition
systems built from the local semantics of the considered networks, together with
the semantics of those ARNs that are provided by a repository of services by
means of stepwise execution, discovery and binding. This gives us a more refined
view of the execution of ARNs than the logic-programming semantics of [2].
Moreover, it allows us to use various forms of temporal logic to express, and even
to verify through standard model-checking techniques, properties concerning the
behaviour of ARNs that are more complex than those considered before. It is
possible, for example, to determine whether or not a given service module of a
repository is used or may be used during the execution of an ARN, or to identify
the differences between the nondeterministic behaviour of a component, reflected
within the execution of an ARN, and the nondeterminism that arises from the
discovery and binding to other ARNs.

References

1. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theoretical
Computer Science 503 (2013) 1–30

2. Ţuţu, I., Fiadeiro, J.L.: A logic-programming semantics of services. In Heckel, R.,
Milius, S., eds.: Algebra and Coalgebra in Computer Science. Volume 8089 of Lecture
Notes in Computer Science., Springer (2013) 299–313

66

Fibred Amalgamation and Fibred Equivalences

Uwe Wolter / Harald König

University of Bergen, Norway / FHDW Hannover, Germany

Indexed semantics. Traditionally the semantics of formal specifications is defined
in an ”indexed” manner analogously to the concepts indexed set and indexed
category, respectively. In indexed semantics we have the universe of ”syntactic
entities” on one side, an appropriate ”semantic universe” on the other side and
”semantic structures” are given by interpretations of syntactic entities in the
semantic universe.

In the area of Algebraic Specifications the syntactic entities are traditionally
algebraic signatures or specifications, respectively. The category Set of sets and
total maps is the standard semantic universe and algebras are the corresponding
semantic structures. First-order model theory and categorical algebra are other
typical examples of ”indexed semantics”.

For the purpose of this talk we consider small (multi) graphs as our syntac-
tic entities (signatures). In view of Algebraic Specifications these are nothing
but many-sorted algebraic signatures with unary operation symbols only. As se-
mantic universe we may chose the category Set. Note, that the category Mult
would be more appropriate as semantic universe when we intend to define the
semantics of the underlying graphs of class diagrams, for example (compare [5]).
A ”semantic structure” for a graph S is nothing but a graph homomorphism
from the graph S into the underlying graph of the category Set.

Amalgamation in indexed semantics. Compositionality is a highly required prop-
erty of any specification formalism [2]. Compositionality means essentially that
we have amalgamation: The model functor, that assigns to a syntactic entity
the category of all its interpretations in a fixed semantic universe, should map
a pushout diagram in the category of syntactic entities to a pullback in the
category of categories.

Amalgamation is kind of inherent for indexed semantics (namely, as long as
our syntactic entities can be seen, in one or another way, as representations of cat-
egories): In our case of graphs as signatures, signature morphisms are just graph
homomorphisms and the reduct functors are given by simple pre-composition
of interpretations with signature morphisms. In such a way, amalgamation is
trivially ensured for all (!) pushouts of signature morphisms by the fact that a
pushout in the category Graph of small graphs is also a pushout in the category
GRAPH of graphs.

Fibred semantics. In software engineering and, especially, in (meta) modelling we
are faced, however, with ”fibred semantics”: Syntactic and semantic entities live
in the same universe thus an entity may play, at the same time, a syntactic and

67

a semantic role (as in meta-modelling for example [5]). ”Semantic structures”
in fibred semantics are instances of syntactic entities that is morphisms in the
common universe (base category) with a syntactic entity as target.

An instance of a graph S, for example, is given by a graph G and a graph
homomorphisms ι : G→ S thus the category Inst(S) of all instances of a graph
S is just the slice category Graph/S.

At a first glance it may be astonishing but by moving from indexed to fibred
semantics we loose some properties that are essential for abstract model theory
along the line of institutions [3].

The reduction of instances along a signature morphism is given by pullback
construction. Thus, assuming an arbitrary but fixed choice of pullbacks in our
base category, any signature morphism from ϕ : S1 → S2 induces a forgetful
functor from Inst(S2) to Inst(S1). Since the construction of pullbacks is only
functorial up to isomorphism we get, however, on the global level not a model
functor but only a model pseudo functor and this pseudo functor depends on an
arbitrary but fixed choice of pullbacks (compare [1]).

Amalgamation in fibred semantics. In fibred semantics we don’t have amalga-
mation for arbitrary pushouts but only for those pushouts that are van-Kampen
squares [4]. In most base categories that appear in applications a sufficient condi-
tion for van-Kampen squares is that one of the legs of the span, constituting the
pushout, is a monomorphism. This observation triggered the concept of adhesive
categories [4].

Adhesive categories have been served as a conceptual basis for quite a lot of
theoretical work on graph and model transformations. Restricting our investi-
gations to adhesive categories, however, has some drawbacks. First, we ignore
all the pushouts that are van-Kampen squares even if there are no monomor-
phisms involved. Second, there are practical relevant situations where exactly
those ”ignored van-Kampen squares” are needed.

To make all the van-Kampen squares, that are ignored by adhesive categories,
available for practical applications we conducted a thorough analysis of van-
Kampen squares in arbitrary topoi based on the concept of descent data [6].
For pre-sheaf topoi (and thus for Set, Graph, ...) we proved a necessary and
sufficient condition for a pushout to be a van-Kampen square.

Recent work and talk. It appears that descent data can be equivalently described
by fibred equivalences. Since equivalence and congruence relations are tradition-
ally an essential basis for the theory of algebraic specifications this observation
gives us a chance to build a bridge from our former general results to the area
of algebraic specifications.

The talk is intended to cover the following topics:

– Definition and discussion of the concept of fibred equivalence.

– Reformulation and discussion of our former results in terms of fibred equiv-
alences.

68

– Presentation of new results. Using fibred equivalences we have been able, for
example, to show for arbitrary topoi that for any monic signature morphism
the correspond (pullback based) reduct functor has a left adjoint.

References

1. Zinovy Diskin and Uwe Wolter. A Diagrammatic Logic for Object-Oriented Visual
Modeling. ENTCS, 203/6:19–41, 2008.

2. H. Ehrig, M. Große–Rhode, and U. Wolter. Applications of category theory to the
area of algebraic specification in computer science. Applied Categorical Structures,
6(1):1–35, 1998.

3. J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specifi-
cation and Programming. Journals of the ACM, 39(1):95–146, January 1992.

4. S. Lack and P. Sobociński. Adhesive Categories. In I. Walukiewicz, editor, proceed-
ings of FOSSACS 2004, pages 273–288. Springer, LNCS 2987, 2004.

5. Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A formal approach
to the specification and transformation of constraints in MDE. Journal of Logic and
Algebraic Programming, 81/4:422–457, 2012.

6. Uwe Wolter and Harald König. Fibred Amalgamation, Descent Data, and Van
Kampen Squares in Topoi. Applied Categorical Structures, pages 1–40, 2013.

69

Fixed Point Logics as Institutions

Kiouvrekis Yiannis1 and Stefaneas Petros2

1 Department of Mathematics
School of Applied Mathematics and Applied Physical Sciences

National Technical University
Athens, 15780 GREECE

yiannisq@central.ntua.gr

2 Department of Mathematics
School of Applied Mathematics and Applied Physical Sciences

National Technical University
Athens, 15780 GREECE
petros@math.ntua.gr

Abstract. It has been already proved that several logics are institu-
tions [3],[14], such as PL - Propositional calculus, FOL - First Order
Logic, FOL1 - Single-sorted logic, FOL+ - Positive First Order Logic,
UNIV - Universal setences in first order logic, HCL - Horn clause
logic, EQL - Equational logics, (Π ∪Σ)0n, SOL - Second order logic,
FOL∞,ω,FOLα,ω - infinitary logics , MFOL - Modal (first order)
logic.
Finite model theory is the study of logics on classes of finite structures.
One of the central issues in finite model theory is the relationship be-
tween logical definability and computational complexity. The expressive
power of First Order Logic (FOL) is weak to express several properties on
finite structures, like connectivity on finite graphs. Another critical issue
is that first-order logic is not closed under inductive definition. For exam-
ple, consider the notion of a connected component of a graph. We define
this concept inductively. Let v a vertex of a graph G and P0(v) = {v}, for
each n ∈ N we define Pn = {x ∈ G |G |= R(x, y)for some y ∈ Pn−1(v)}.
If G is finite graph then for some m Pm(v) = Pm+1(v). In this case
Pm(v) is the connected component of v in G. Although first-order logic
can define the sets Pm for each m ∈ N, it cannot define the notion of a
connected component. Hence first-order logic is not closed under induc-
tive definitions. A methodology that can be followed in order to construct
Logics with greater expressive power than FOL, should handle inductive
definitions.
A way of modeling recursive definitions is to incorporate an explicit fixed
point operator. Logics following this approach are called fixed-point log-
ics. We consider logics that include various fixed-point operators. These
logics are minimal extensions of first-order logic that are closed under
inductive definitions.
There is more than one way to make the notion of inductive definition
precise. Each corresponds to a different fixed-point operator.
1. Least Fixed Point Logic (LFP)

70

2. Monotone Fixed Point Logic (MFP)
3. Inflationary Fixed Point Logic (IFP)
4. Partial Fixed Point Logic (PFP)

In our presentation we plane to prove that LFP and MFP are insti-
tutions.

References

1. Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language
1979 Copen Winter School on Abstract Software Specification volume 86 of Lec-
tures Notes in Computer Science, pages 292-332. Springer 1980.

2. Joseph Goguen and Rod Burstall. Introductory institutions Proceedings, Logics of
Programming Workshop, volume 164 of Lecture Notes in Computer Science pages
221-256, 19

3. Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specifi-
cation and programming. Journal of the Association for Computing Machinery 39
(1):95-146, 1992

4. Daniel Gaina and Andrei Popescu. An institution-independent generalization of
Tarski’s Elementary Chain Theorem Journal of Logic and Computation, 16(6):713-
735, 2006

5. Daniel Gaina and Andrei Popescu. An intitution-independent proof of Robinson
consistency theorem. Studia Logica, 85(1):41-73, 2007

6. Razvan Diaconescu. Institution-independent ultraproducts. Fundameta Informat-
ica, 55(3-4):321-348

7. Razvan Diaconescu. Elementary diagrams in institutions, Journal of Logic and
Computation, 14(5):651-674, 2004

8. Razvan Diaconescu. An institution-independent proof of Craig Interpolation The-
orem. Studia Logica, 77(1):59-79, 2004

9. Razvan Diaconescu. Borrowing interpolation Journal Logic Computation22(3):
561-586 2012.

10. Marius Petria and Razvan Diaconescu. Abstract Beth definability in institutions.
Journal of Symbolic Logic, 71(3):1002-1028,2006

11. Marius Petria. An institutional version of Godel Completeness Theorem. In Al-
gebra and Coalgebra in Computer Science, volume 4624, pages 409-424, Springer
Berlin/Heidelberg, 2007

12. Petros Stefaneas and Razvan Diaconescu. Ultraproducts and possible worlds se-
mantics in institutions. Theoritical Computer Science, 379(1):210-230, 2007

13. Razvan Diaconescu, Joseph Goguen and Petros Stefaneas. Logical support for mod-
ularisation. Logical Environments pages 83-130, Cambridge 1993. Proceedins of a
Workshop held in Edinburg, Scotland, May 1991.

14. Razvan Diaconescu. Institution-independent Model Theory Studies in Universal
Logic Springe Birkhauser, 2008

15. G.S. Boolos, J.P. Burgess, R.C. Jeffrey Computability and Logic Cambridge Press
2007

16. Leonid Likin Elements of Finite Model Theory Springer 2012
17. Mihai Codescu and Daniel Gaina. Birkhoff completeness in institutions. Logica

Universalis , 2(2):277 309, 2008

71

A SOC-Based Formal Specification and
Verification of Hybrid Systems

Ning Yu and Martin Wirsing

Department of Computer Science, University of Munich
Oettingenstrasse 67, 80538 Munich, Germany

{yu,wirsing}@pst.ifi.lmu.de

http://www.pst.ifi.lmu.de/

Service-Oriented Computing (SOC) is a computing paradigm that utilizes
services as fundamental elements to support rapid, low-cost development of dis-
tributed applications in heterogeneous environments[1]. In SOC, a service is
defined as an independent and autonomous piece of functionality which can be
described, published, discovered and used in a uniform way. Within the devel-
opment of SOC, complex systems are more and more involved. A typical type of
complex systems are the hybrid systems, which arise in embedded control where
discrete components are coupled with continuous components. In an abstract
point of view, hybrid systems are mixtures of real-time (continuous) dynamics
and discrete events[2]. In order to address these two aspects into SOC paradigm,
we make our approach by giving a SOC-based formal specification and verifica-
tion to hybrid systems.

The SOC-based formal specification of hybrid systems are realized by giving a
hybrid extension to the SENSORIA Reference Modeling Language (SRML)[8][9].
SRML is a modeling language that can address the higher levels of abstraction of
”business modeling”[3], developed in the project SENSORIA – the IST-FET In-
tegrated Project that develops methodologies and tools such as Web Services[4]
for dealing with the challenges arose in Service-Oriented Computing. By defin-
ing the Hybrid Doubly Labeled Transition Systems (HL2TSs) which extend the
L2TSs of the branching time logic UCTL[5], we give a semantic domain over
which the SRML extension could be defined and interpreted. Then we extend
SRML syntax with a set of differential equation-based expression and define the
formal semantics. In the extension, we combine the branching time logic UCTL
with the dynamic temporal logic dTL[6] as the logic basis for reasoning about
properties of SOC-based hybrid systems, in that we redefined dTL formulas and
interpret them over HL2TSs.

We illustrate our approach of verification though a case study of the Eu-
ropean Train Control System (ETCS)[7], which is a a signalling, control and
train protection system designed to replace the many incompatible safety sys-
tems currently used by European railways. In such a system the displacement of
the train is governed by ordinary differential equations. Besides specifying the
system with extended SRML, we verify it’s safety property with a set of sequent
calculus provided in [6] for verifying hybrid systems in dTL.

72

References

1. Georgakopoulos, D., Papazoglou, M.: Service-Oriented Computing. The MIT Press
Cambridge, Massachusetts (2009)

2. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems.
Springer London, UK (1999)

3. Abreu, J., Bocchi, L., Fiadeiro, J., Lopes, A.: Specifying and Coomposing Interac-
tion Protocols for Service-Oriented System Modelling. In: Derrick J., Vain J. (eds.)
FORTE 2007. LNCS, vol. 4574, pp. 358–373. Springer, Berlin Heidelberg (2007)

4. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, New York
(2004)

5. Maurice, H., ter Beek, Fantechi, A, Gnesi, S., Mazzanti, F.: An Action/State-
Based Model-Checking Approach for the Analysis of An Asynchronous Protocol for
Service-Oriented Applications. In: Leue S., Merino P. (eds.) FMICS 2007. LNCS,
vol. 4916, pp. 133–148. Springer, Heidelberg (2008)

6. Platzer A.: AVACS – Automatic Verification and Analysis of Complex Systems.
Technical report No. 12, AVACS (2007)

7. European Train Control System (ETCS) Open Proofs – Open Source, http://

openetcs.org/

8. Abreu, J.: Modelling Business Conversations in Service Component Architectures.
PhD thesis, University of Leicester (2009)

9. Fiadeiro, J., Lopes, A.,Abreu, J.: A Formal Model for service-Oriented Interactions.
In: Science of Computer Programming, vol. 77, pp. 577 – 608. Elsevier (2012)

73

	On Logic Embeddings and Gödel's God
	An Interface to Symbolic Methods
	Integrating Athena with Algebraic specifications
	Symbolic Execution by Language Transformation
	Programming Language Abstractions Based on Executable Algebraic Semantics
	Semantic Mining of Context Update Constructs in Imperative Languages
	An Institutional Approach to Positive Coalgebraic Logic
	Autonomous Systems in Rewriting Logic
	Arguing Safety Cases Formally
	Proving Properties of Concurrent Systems using Graph Transformations and Event-B
	An Institutional Foundation for the K Semantic Framework
	A Theoretical Foundation for Programming Language Aggregation
	Coq as a dependently typed system to build safe concurrent programs
	Heterogeneous refinement in HETS
	Term Graph Rewriting using Spans
	Two institutions of finite-state methods
	(Co)algebraic semantics of heavy-weighted automata
	Herbrand's Theorem in Hybrid Institutions
	On the Semantics of Helena Ensemble Specifications
	An Institutional Framework for Heterogeneous Formal Development in UML
	What is a derived signature morphism?
	Safety and Performance of the European Rail Traffic Management System: A Modelling and Verification Exercise in Real Time Maude
	A canonical proof-theoretic approach to model theory
	Quasiary Specification Algebras and Logics
	Proving liveness properties using abstract state machines and n-visibility
	Improving the Quality of Use Cases via Model Construction and Analysis
	A Refinement Procedure for Inferring Side-Effect Constructs
	Solving Queries over Modular Logic Programs
	A Full Operational Semantics of Asynchronous Relational Networks
	Fibred Amalgamation and Fibred Equivalences
	Fixed Point Logics as Institutions
	A SOC-Based Formal Specification and Verification of Hybrid Systems

